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Scientific Machine Learning (SciML)

What?

• SciML systematically integrates ML methods with mathematical models and algorithms 
developed in various scientific and engineering domains

Why?

• Scientific applications are governed by 
fundamental principles and physical constraints

• Purely data-driven “black box” ML methods 
cannot satisfy underlying physics

How?

• Leverage automatic differentiation used in 
learning for modeling, optimization, and control

Image source: https://sciml.wur.nl/reviews/sciml/sciml.html

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed 

machine learning. Nat Rev Phys 3, 422–440, 2021. 

https://sciml.wur.nl/reviews/sciml/sciml.html
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Landscape of SciML Methods

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 2021. 

Thiyagalingam, J., Shankar, M., Fox, G. et al. Scientific machine learning benchmarks. Nature Reviews Physics 4, 413–420, 2022. 

Nghiem T., Drgona J., et al. Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems, ACC, 2023.
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Learning to Solve Differential Equations with 
Physics-Informed Neural Networks (PINNs)

M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving 

nonlinear partial differential equations, Journal of Computational Physics, 2019

Dataset: collocation points in the 

spatio-temporal coordinates.

https://github.com/pnnl/neuromancer/blob/master/examples/PDEs/Part_2_PINN_BurgersEquation.ipynb 

Architecture: PDE equations 

solved with neural network via 

automatic differentiation. 

Loss function: minimizing PDE equation, 

initial and boundary condition residuals.

https://github.com/pnnl/neuromancer/blob/master/examples/PDEs/Part_2_PINN_BurgersEquation.ipynb
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Learning to Optimize (L2O) with Constraints 

A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019

P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021

Dataset: collocation points in the 

parametric space.

https://github.com/pnnl/neuromancer/blob/master/examples/parametric_programming/Part_1_basics.ipynb 

Loss function: minimizing objective 

function and constraints penalties.

Architecture: differentiable 

optimization solver with neural 

network surrogate. 

https://github.com/pnnl/neuromancer/blob/master/examples/parametric_programming/Part_1_basics.ipynb
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Learning to Model (L2M) with Neural Operators

R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019

B. Lusch, et al., Deep learning for universal linear embeddings of nonlinear dynamics , 2018

Dataset: time-series of states, 

inputs, and disturbances tuples.
Loss function: trajectory matching, 

regularizations, and constraints penalties.

Architecture: differentiable ODE 

solver with neural network model. 

https://github.com/pnnl/neuromancer/blob/master/examples/ODEs/Part_1_NODE.ipynb 

Architecture: Koopman operator 

with neural network basis functions. 

https://github.com/pnnl/neuromancer/blob/master/examples/ODEs/Part_1_NODE.ipynb
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Jan Drgona, et al., Differentiable Predictive Control: An MPC Alternative for Unknown Nonlinear Systems using Constrained Deep 

Learning, Journal of Process Control, 2022

Dataset: collocation points in the 

control parametric space.
Loss function: reference tracking, 

constraints and terminal penalties.

Architecture: differentiable model 

with neural network control policy. 

https://github.com/pnnl/neuromancer/blob/master/examples/control/Part_3_ref_tracking_ODE.ipynb 

Learning to Control (L2C) with Differentiable System Models

https://github.com/pnnl/neuromancer/blob/master/examples/control/Part_3_ref_tracking_ODE.ipynb


import neuromancer as nm

p = nm.variable(‘p’) 
x = nm.variable(‘x’) 
y = nm.variable('y’) 
 
obj = ((1-x)**2 + p*(y-x**2)**2).minimize(weight=1.0, name='obj’)
c1 = (p/2)**2 <= x**2 + y**2
c2 = x**2 + y**2 <= p**2 
c3 = x >= y

net = nm.MLP(insize=2, outsize=2, hsizes=[80]*4)
map = nm.Node(net, input_keys=['p’], output_keys=[‘x’,‘y’]) 

loss = nm.PenaltyLoss([obj], [c1, c2, c3])
problem = nm.Problem([map], loss)
optimizer = torch.optim.AdamW(problem.parameters())
trainer = nm.Trainer(problem,data,optimizer)
best_model = trainer.train() 8

NeuroMANCER Scientific Machine Learning Library

2. Python code interface

1. Mathematical formulation

4. Results

3. Problem graph

map
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NeuroMANCER Scientific Machine Learning Library

• Open-source scientific machine learning (SciML) 
toolbox in Pytorch integrating deep learning, 
constrained optimization, and physics-based modeling

▪ Learning to optimize 

▪ Learning to control

▪ Nonlinear system identification

▪ Physics-informed neural networks

drgona.github.io

github.com/pnnl/neuromancer

www.youtube.com/@neuromancer_SciML 

https://drgona.github.io/
https://github.com/pnnl/neuromancer
http://www.youtube.com/@neuromancer_SciML
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Metric Learning to Accelerate Convergence of 
Operator Splitting Methods

Douglas-Rachford splitting (DR) algorithm: 

Parametric programming setting:

Ethan King, James Kotary, Ferdinando Fioretto, Jan Drgona, Metric Learning to Accelerate Convergence of Operator 

Splitting Methods for Differentiable Parametric Programming, CDC 2024.

Idea: Train neural network to optimize the metric as a 

function of problem parameters:

We can accelerate convergence of 

DR and ADMM algorithms via end-

to-end metric learning.
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Metric Learning is a Form of Active Set Prediction

Ethan King, James Kotary, Ferdinando Fioretto, Jan Drgona, Metric Learning to Accelerate Convergence of Operator 

Splitting Methods for Differentiable Parametric Programming, CDC 2024.
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NeuroMANCER Scientific Machine Learning Library

Active Core Team Members

Ján Drgoňa Draguna VrabieBruno JacobRahul Birmiwal

PyTorch SciML toolkit

User-friendly API

Interactive tutorials

Community engagement

NeuroMANCER

github.com/pnnl/neuromancer

Past Core Team Members

Aaron Tuor James KochMadelyn Shapiro

http://github.com/pnnl/neuromancer
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Hiring!

Starting a new group at the Department of 
Civil & Systems Engineering at Johns 
Hopkins University

• Multiple PhD and postdoc opportunities 

• Starting January 2025

• Focus on Scientific Machine Learning for 
dynamics, optimization, and control

• Applications in energy systems

drgona.github.io

https://drgona.github.io/
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