Energy Storage Market Power & Strategic Withholding

James Anderson

Department of Electrical Engineering Columbia University

September 3, 2024

Seventh Workshop on Autonomous Energy Systems: NREL

Acknowledgements

- Yiqian Wu, Columbia University
- Bolun Xu, Columbia University
- Jip Kim, Kentech

Traditional Power Systems Engineering

- Unidirectional power transmission from generators to end-users
- Centralized energy management system and electricity market

Source: Adapted from U.S.-Canada Power System Outage Task Force. (2004)

Motivation 3

Paradigm Shift

- Deployment of various Distributed Energy Resources (DERs)
- FERC Order 2222: DER aggregation directly participates in electricity markets [1]

Source: Adapted from Energy Atlas 2018: Figures and Facts about Renewables in Europe.

Motivation

Electricity Production

Share of low-carbon resources in electricity mix gradually increasing

Source: https://ourworldindata.org/electricity-mix

Main Concerns & Challenges

Economic competitiveness in low-carbon electricity market

- Vague marginal cost related to renewables, energy storage units, etc.
- High uncertainty inherent in the output of distributed energy resources

Source: https://www.nytimes.com/interactive/2024/05/07/climate/battery-electricity-solar-california-texas.html.

Competition and Market Power

- Ideal market achieves perfect competition and maximizes social welfare
- Market power: the ability of a participant (Price Maker) to manipulate the market clearing price

Key Questions

- How should market participant bid in order to gain extra profits?
- What measures can be taken to prevent such an inefficient market environment?
- How effective are these countermeasures?

Key Concepts

- Price Taker: accepts prevailing prices and lacks the market share to influence market prices
- Price Maker: typically maintains a large market share, anticipates the influence
 of their bids on market prices with sufficient knowledge of the system status
- Physical Withholding: Intentionally throttling generation output to drive up price
- Economic Withholding: Submitting strategic bids that deviate from the true marginal cost or utility

Strategic Bidding of the Market Participant

A bilevel bidding strategy based on the hierarchical market structure

Upper-Level Problem: optimal offer decision-making

⇒ Maximize individual profit

⇒ Decide offer:

marginal cost (\hat{c}_i) & capacity (\hat{g}_i)

Lower-Level problem: market economic dispatch

⇒ Predict market outcome:

clearing price (λ_i) & dispatch (g_i)

Market Clearing Workflow: Conduct & Impact Tests

- Conduct test: compare submitted offers to reference levels
- Impact test: evaluate impact of conduct-test-failed offers on prices
- Offer mitigation: replace submitted offers with reference levels

Mitigation-Aware Strategic Bidding

Bilevel problem of the strategic generation company G (simplified)

Submit offers below mitigation threshold to circumvent conduct & impact tests

$$\begin{split} \max_{\hat{c}_i,\lambda_m,g_i} \quad & \sum_{i\in\Omega_G} \left(\lambda_{m(i)}-c_i\right)g_i \text{ // participant profit} \\ \text{s.t.} \quad & 0\leq \hat{c}_i \leq \overline{c}, \text{ } \forall i\in\Omega_G \text{ // market offer cap} \\ & 0\leq \lambda_m \leq \overline{\lambda}, \text{ } \forall m\in\mathcal{N} \text{ // clearing price cap} \\ & |\hat{c}_i-c_i^0| \leq x_i, \text{ } \forall i\in\Omega_G \text{ // conduct-test threshold} \\ & |\lambda_m-\lambda_m^0| \leq y_m, \text{ } \forall m\in\mathcal{N} \text{ // impact-test threshold} \end{split}$$

$$\begin{split} \lambda_m, g_i \in \arg\min_{\Xi LL} & \sum_{i \in \Omega_G} \hat{c}_i g_i + \sum_{j \in \Omega'_G} \hat{c}_j g_j \text{ // generation cost} \\ \text{s.t.} & \sum_i g_i + \sum_j g_j = D_m + \sum_n p_{mn} - \sum_l p_{lm} : \lambda_m, \ \forall m \in \mathcal{N} \\ & p_{mn} = B_{mn}(\theta_m - \theta_n), \ \forall (m, n) \in \mathcal{E} \\ & - \overline{P}_{mn} \leq p_{mn} \leq \overline{P}_{mn}, \ \forall (m, n) \in \mathcal{E} \\ & 0 \leq g_i \leq \overline{G}_i, \ \forall i \in \Omega_G \\ & 0 \leq g_j \leq \overline{G}_j, \ \forall j \in \Omega'_G \\ & - \pi \leq \theta_m \leq \pi, \ \forall m \in \mathcal{N} \end{split}$$

Solution Techniques

Bilevel problems: strongly NP-hard [2]

Solution technique

- Derive a (non-convex) single-level equivalent
- Linearize
- Off-the-Shelf solver for (non-convex) MILP

2-Bus Test System

Market participant

- Unit A: strategic participant
- Unit B: non-strategic competitor

Bidding & Clearing assumptions

- Perfect prediction for market outcome and reference levels
- ullet Mitigation thresholds for conduct and impact tests set at 100%
- Tie-Breaking constraints to guarantee fairness among price-tied units

Clearing results in the uncongested network

Strategy of Unit A	Unit Before Mitigation					After Mitigation			
otheregy of other 11		\hat{c}_i	g_i	λ_i	$Profit_i^*$	\hat{c}_i	g_i	λ_i	$Profit_i$
Non-Strategic	A	20	25	20	0	-	-	-	0
	B	20	25	20	0	-	-	-	0

Recall for unit i:

• \hat{c}_i : offer price, \$/MWh

• g_i : dispatch decision, MW

• λ_i : clearing price, \$/MWh

• Profit_i: = $(\lambda_i - c_i)g_i$, \$, where c_i is the true cost, \$/MWh

Clearing results in the uncongested network

Strategy of Unit A	Unit		Before Mitigation				After Mitigation			
otrategy or ome 11		\hat{c}_i	g_i	λ_i	$Profit_i^*$	\hat{c}_i	g_i	λ_i	$Profit_i$	
Non-Strategic	A	20	25	20	0	-	-	-	0	
Non Strategie	B	20	25	20	0	=	-	-	0	
Mitigation-Unaware	A	100	20	100	1600	20	25	20	0	
winigation onaware	B	20	30	100	2400	-	25	20	0	

recall for unit i

• \hat{c}_i : offer price, \$/MWh

• g_i : dispatch decision, MW

• λ_i : clearing price, \$/MWh

 \bullet $\operatorname{Profit}_i:=(\lambda_i-c_i)g_i,$ \$, where c_i is the true cost, \$/MWh

Clearing results in the uncongested network

Strategy of Unit A	Unit		Before	Mitigatio	on	After Mitigation			
Strategy of Ollit 11		\hat{c}_i	g_i	λ_i	$Profit_i^*$	\hat{c}_i	g_i	λ_i	$Profit_i$
Non-Strategic	\boldsymbol{A}	20	25	20	0	-	-	-	0
rion otheregie	B	20	25	20	0	-	-	-	0
Mitigation-Unaware	A	100	20	100	1600	20	25	20	0
melgation onavare	B	20	30	100	2400	-	25	20	0
Conduct-Aware	A	40	20	40	400	-	-	-	400
	B	20	30	40	600	-	-	-	600
Impact-Aware	A	40	20	40	400	-	-	-	400
	B	20	30	40	600	-	-	-	600

Local market in the uncongested network

- Mitigation-Aware bidding can successfully bypass mitigation and gain additional profit
- Both strategic and non-strategic players benefit from market power exercise [3]

Clearing results in the congested network

Strategy of Unit A	Unit	\hat{c}_i	g_i	λ_i	$Profit_i$
Conduct-Aware	\boldsymbol{A}	40	27	40	540
Conduct / Warc	B	20	23	20	0
Impact-Aware	\boldsymbol{A}	40	27	40	540
pace / ware	B	20	23	20	0

Regional competition in the congested network

- Capacity limit and congestion are two major sources of market manipulation
- Conduct-Aware bidding strategy is more conservative v.s. Impact-Aware bidding

Main Takeaways

- Proposed a mitigation-aware strategic bidding model to study the influence and effectiveness of current mitigation practices
- Illustrated the vulnerability of electricity markets to market power manipulation with limited offer mitigation tools
- Our mitigation-aware bidding framework can serve as an analysis tool for alternative market designs

Electrical Engineering and Systems Science > Systems and Control

[Submitted on 2 May 2024]

Market Power and Withholding Behavior of Energy Storage Units

Yiqian Wu, Bolun Xu, James Anderson

Energy Storage Unit Penetration

- Electricity markets experiencing a rapid increase in energy storage unit participation
- Quantifying competitive operation and identifying if a storage unit is exercising market power is challenging
- Lacks systematic studies on the intricacies of multi-interval bidding strategies

Energy Storage Unit Penetration: Challenges

- Electricity markets experiencing a rapid increase in energy storage unit participation
- Quantifying competitive operation and identifying if a storage unit is exercising market power is challenging
- Lacks systematic studies on the intricacies of multi-interval bidding strategies

Key Concepts

- Price Taker: accepts prevailing prices and lacks the market share to influence market prices
- Price Maker: typically maintains a large market share, anticipates the influence
 of their bids on market prices with sufficient knowledge of the system status
- Capacity Withholding: action taken by a price maker resources purposefully limiting their supply despite the current price being higher than marginal production cost

Market Power and Price Sensitivity

Price sensitivity to market power exercise:

$$\lambda_t = \bar{\lambda}_t - \alpha_t q_t$$

where at time t

• λ_t : influenced clearing price, \$/MWh

• $\bar{\lambda}_t$: nominal clearing price, \$/MWh

• α_t : price sensitivity parameter, $\alpha_t \geq 0$

• q_t : dispatch decision, MW

Market Power and Price Sensitivity

Market power exercise - in supply-demand equilibrium based market

- Bid supply curves shift from **price taker**: $q'(\lambda)$ to **price maker**: $q''(\lambda)$
- Capacity withholding Δq_t leads to price increase from λ_t' to λ_t''

Energy Storage Strategic Bidding

Convex self-scheduling model for energy storage units strategic bidding and profit maximization based on price forecasts $\hat{\lambda}_t$ for all $t \in \mathcal{T}$ [4]

$$\begin{split} \underset{p_t,b_t,e_t}{\text{maximize}} & & \sum_{t \in \mathcal{T}} \hat{\lambda}_t(p_t - b_t) \\ \text{s.t.} & & 0 \leq p_t, \ b_t \leq \bar{P}, \quad \forall t \in \mathcal{T} \\ & & p_t = 0 \text{ if } \hat{\lambda}_t < 0, \quad \forall t \in \mathcal{T} \\ & & e_t - e_{t-1} = -\frac{p_t}{\eta} + b_t \eta, \quad \forall t \in \mathcal{T} \\ & & 0 \leq e_t \leq E, \quad \forall t \in \mathcal{T} \end{split} \qquad \text{$//$ charging & discharging & dischargi$$

where at time t

- p_t , b_t : amount of energy discharge and charge, MW
- e_t: state of charge (SoC), MW
- \bar{P} : power capacity, MW
- η : charging and discharging efficiency parameter, $\eta \in (0,1]$
- E: energy storage capacity, MWh

Energy Storage Strategic Bidding

Simplified bidding model cost functions

Price taker:

$$\underset{p_t, b_t}{\text{maximize}} \quad \sum_{t \in \mathcal{T}} \hat{\lambda}_t (\underline{p_t - b_t}) \tag{1}$$

Price maker:

$$\underset{p_t, b_t}{\text{maximize}} \quad \sum_{t \in \mathcal{T}} (\bar{\lambda}_t - \alpha_t (\underbrace{p_t - b_t})) (p_t - b_t) \tag{2}$$

Strategic Capacity Withholding Detection

Main Theorem (informal)

- ex-post market power monitoring strategy for market operator

Given a series of observed storage power output profiles $\{p_t, b_t\}$ and market clearing prices $\{\lambda_t\}$ for all $t \in \tilde{\mathcal{T}}$, where $\tilde{\mathcal{T}} = \{1, 2, \dots, NT\}$,

the storage unit is not evidently exercising market power, if the following conditions are satisfied:

0

$$\underbrace{\sum_{t \in \tilde{\mathcal{T}}} \mathbb{1}_{\left\{0 < p_t < \bar{P}\right\}} + \sum_{t \in \tilde{\mathcal{T}}} \mathbb{1}_{\left\{0 < b_t < \bar{P}\right\}}}_{\text{$\#$ of non-idle periods}} \leq \underbrace{N'}_{\text{$\#$ of total periods}}$$

2 The price-decision relationship is satisfied (details omitted).

Two-Interval Bidding

Price taker: p_t^* , b_t^* : optimal solutions to (1) [discharge, charge]

Scenario	Interval	1	Interval	2
	p_1^*	b_1^*	p_2^*	b_2^*
$\hat{\lambda}_1 > \frac{\hat{\lambda}_2}{\eta^2}$ $\hat{\lambda}_2 \eta^2 \le \hat{\lambda}_1 \le \frac{\hat{\lambda}_2}{\eta^2}$ $\hat{\lambda}_1 < \hat{\lambda}_2 \eta^2$	$ar{P}\eta^2$	0	0	$ar{P}$
$\hat{\lambda}_2 \eta^2 \leq \hat{\lambda}_1 \leq \frac{\hat{\lambda}_2}{n^2}$	0	0	0	0
$\hat{\lambda}_1 < \hat{\lambda}_2 \eta^2$	0	$ar{P}$	$\bar{P}\eta^2$	0

recall problem parameters

• $\hat{\lambda}_t$: price forecast for time t

• \bar{P} : power capacity

• η : charging and discharging efficiency parameter, $\eta \in (0,1]$

Criterion for strategic bidding decision making - scenario distinction

• Sufficient profit to compensate for energy loss during charging and discharging,

Two-Interval Bidding

Price maker: p_t^* , b_t^* : optimal solutions to (2) [discharge, charge]

Scenario		Interval 1		Interval 2	
Scenario		p_1^*	b_1^*	p_2^*	b*
$\bar{\lambda}_1 > \frac{\bar{\lambda}_2}{\eta^2}$	$\bar{\lambda}_1 - 2\alpha_1 P \eta^2 \ge \frac{\bar{\lambda}_2 + 2\alpha_2 \bar{P}}{\eta^2}$	$P\eta^2$	0	0	P
	$ar{\lambda}_1 - {}_2lpha_1 P \eta^2 < rac{ar{\lambda}_{2+2}lpha_2ar{P}}{\eta^2}$	$\frac{\bar{\lambda}_1 - \frac{\bar{\lambda}_2}{\eta^2}}{\frac{2(\alpha_1 + \frac{\alpha_2}{\eta^4})}{}}$	0	0	$\frac{\bar{\lambda}_1 - \frac{\bar{\lambda}_2}{\eta^2}}{\frac{2(\alpha_1 + \frac{\alpha_2}{\eta^4})\eta^2}{}$
$\lambda_2 \eta^2 \le \lambda_1 \le \frac{\bar{\lambda}_2}{\eta^2}$		0	0	0	0
$ar{\lambda}_1 < ar{\lambda}_2 \eta^2$	$\frac{\bar{\lambda}_{1}+2\alpha_{1}\bar{P}}{\eta^{2}} > \bar{\lambda}_{2}-2\alpha_{2}\bar{P}\eta^{2}$ $\frac{\bar{\lambda}_{1}+2\alpha_{1}P}{\eta^{2}} \leq \bar{\lambda}_{2}-2\alpha_{2}\bar{P}\eta^{2}$	0	$\frac{-\bar{\lambda}_1 + \bar{\lambda}_2 \eta^2}{\frac{2(\alpha_1 + \alpha_2 \eta^4)}{\bar{P}}}$	$\frac{(-\bar{\lambda}_1+\bar{\lambda}_2\eta^2)\eta}{2(\alpha_1+\alpha_2\eta^4)}$ $\bar{P}\eta^2$	0 0

Criterion for strategic bidding decision making - scenario distinction

- Scenario Col #1: Sufficient profit to compensate for energy loss during charging and discharging,
- Scenario Col #2: If exercising market power, sufficient marginal revenue to compensate for negative impact intervals.

Two-Interval Bidding

- Price makers achieve additional profits by exercising market power
- Price takers have insufficient incentive to resist the exercise of market power [3]

Scenario	Price Taker (\$)	Price Maker (\$)
No market power	37.95	_
Low market power	47.50	42.02
High market power	66.66	49.11

$$\lambda_t = \bar{\lambda}_t - \frac{\alpha_t q_t}{\alpha_t}$$

Main Takeaways

- mechanism design is essential to ensure social welfare
- reproduced empirical economic observations with a simple model we can understand
- uncertainty in future price predictions

Imperfect Price Forecasting

- Assumed that the price λ_t is provided and accurate clearly not realistic
- How does uncertainty in price affect bidding?
- We will consider a deterministic/worst case scenario for the price taker
- λ_t is unknown but assumed to belong to the set Λ_t

$$\label{eq:linear_posterior} \begin{split} \underset{p_t,b_t,e_t}{\text{maximize}} & \sum_{t \in \mathcal{T}} \hat{\lambda}_t(p_t - b_t) \quad \text{for all } \hat{\lambda}_t \in \Lambda_t \\ \text{s.t.} & 0 \leq p_t \ b_t \leq \bar{P} \quad \forall t \in \mathcal{T} \\ & p_t = 0 \ \text{if } \hat{\lambda}_t < 0 \quad \forall t \in \mathcal{T} \\ & e_t - e_{t-1} = -\frac{p_t}{\eta} + b_t \eta \quad \forall t \in \mathcal{T} \\ & 0 \leq e_t \leq E \quad \forall t \in \mathcal{T} \end{split}$$

- infinite-dimensional and convex (if Λ_t is convex)
- many approaches to robust stochastic optimization c.f. Roald et al. Electric Power Systems Research, 2023

Finite-Dimensional Reformulation

w.l.o.g. we rewrite our LP in epigraph form

$$\begin{aligned} & \underset{x,\gamma}{\text{maximize}} & & \gamma \\ & \text{s.t.} & & \gamma \leq c^T x & \text{for all} & c_i \in \mathcal{C}_i \\ & & & Ax \leq b \end{aligned}$$

• we are considering a worst case setting

$$\begin{array}{ll} \underset{x,\gamma}{\text{maximize}} & \gamma \\ & \text{s.t.} & \inf_{c_i \in \mathcal{C}_i} \{c^T x\} \geq \gamma \\ & & Ax \leq b \end{array} \tag{\dagger}$$

ullet the representation of \mathcal{C}_i determines if we problem can be solved

Polyhedral Uncertainty

• Let $\mathcal{C}:=\mathcal{C}_1 imes\mathcal{C}_2 imes\cdots imes\mathcal{C}_T$ be bounded and non-empty, then

$$\mathcal{C} := \left\{ c \in \mathbb{R}^T \mid Dc \le d \right\}$$

Polyhedral Uncertainty

ullet Let $\mathcal{C}:=\mathcal{C}_1 imes\mathcal{C}_2 imes\cdots imes\mathcal{C}_T$ be bounded and non-empty, then

$$\mathcal{C} := \left\{ c \in \mathbb{R}^T \mid Dc \le d \right\}$$

• The lower-level problem of (†) can be written as

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T x \quad \text{s.t.} \quad D\mathbf{c} \leq d \\
\mathbf{c}
\end{array} \tag{\mathcal{P}}$$

• By strong duality, the optimal cost of (\mathcal{P}) can be obtained by solving

$$\label{eq:linear_problem} \begin{aligned} & \underset{y}{\text{maximize}} & & -y^T d & & & & & & & & & \\ & \text{s.t.} & & & & & & & & & & & & & & \\ & & & \text{s.t.} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Polyhedral Uncertainty

• Replace $\inf_{c_i \in \mathcal{C}_i} \{c^T \mathbf{x}\}$ from (\dagger) with (\mathcal{D}) to get

$$\begin{aligned} & \underset{x,y,\gamma}{\mathsf{maximize}} & & \gamma \\ & \mathsf{s.t.} & & \underset{y}{\mathsf{maximize}} & \{-y^Td\} \geq \gamma \\ & & & x = -D^Ty, & y \geq 0 \\ & & & Ax < b \end{aligned}$$

• The second "maximize" is redundant, so remove

$$\begin{aligned} & \underset{x,y,\gamma}{\text{maximize}} & & \gamma \\ & \text{s.t.} & & -y^T d \geq \gamma \\ & & & x = -D^T y, \quad y \geq 0 \\ & & & Ax \leq b \end{aligned}$$

a finite-dimensional LP!

Ellipsoidal Uncertainty

Representations of an Ellipse

$$\mathcal{E} = \left\{ \bar{\lambda} + Pu \in \mathbb{R}^T \mid ||u|| \le 1 \right\} = \left\{ x \mid (x - x_c)^T P^{-2} (x_c - x) \le 1 \right\}$$

Ellipsoidal Uncertainty

Representations of an Ellipse

$$\mathcal{E} = \left\{ \bar{\lambda} + Pu \in \mathbb{R}^T \mid ||u|| \le 1 \right\} = \left\{ x \mid (x - x_c)^T P^{-2} (x_c - x) \le 1 \right\}$$

Minimum-volume ellipsoid that contains all the data:

$$\begin{aligned} & \underset{P}{\min} & -\log \det \left(P^{-2}\right) \\ & \text{s.t.} & & (\lambda^s - \lambda_c)^\top P^{-2}(\lambda^s - \lambda_c) \leq 1, \quad \text{for } s = 1, \dots, N \\ & & & P \succeq 0, \quad P = P^\top \end{aligned}$$

Covariance matrix from data:

$$P_{ij} := \text{cov}(X_i, X_j) = \frac{1}{m-1} \sum_{k=1}^{m} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)$$

NYISO Data: Polyhedral I

Γ (%)	50	55	60	65	70	75	80	85	90
Robust profit Actual profit	175.96 -15.76	117.42 2.19	71.60 23.58	30.73 26.24	5.77 32.48	0.00 0.00	0.00	0.00	0.00

Figure: Polyhedral (box) uncertainty set of electricity prices – i, $\Gamma=60\%$ and 90%.

$$C(\Gamma) = \left\{ \boldsymbol{\lambda} \in \mathbb{R}^{N+1} : \frac{\lambda_t - \mathbb{E}\lambda_t}{\sigma(\lambda_t)} \le \Gamma, \ t = 0, \dots, N \right\}$$

NYISO Data: Polyhedral II

Γ	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
Robust profit	223.61	171.21	125.73	89.95	56.90	28.35	8.57	1.25	0.00	0.00	0.00
Actual profit	-17.79	-8.80	-0.28	23.40	24.13	32.02	29.01	16.54	0.00	0.00	

Figure: Polyhedral (box) uncertainty set of electricity prices, quantile $\Gamma=0.15.$

$$C = \left\{ \boldsymbol{\lambda} \in \mathbb{R}^{N+1} : \underline{\lambda}_t \le \lambda_t \le \overline{\lambda}_t, \ t = 0, \dots, N \right\}$$

NYISO Data: Ellipsoidal I

Ellipsoidal Uncertainty Set of Electricity Prices — ${f P}$ fitted from minimum volume problem

Δ	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
Robust profit	223.36	195.19	166.77	138.46	110.27	82.63	57.19	35.19	18.48	5.07	0.00
Actual profit	-17.79	-17.79	-17.44	-16.17	-17.08	-23.17	-37.54	-46.03	-30.88	-26.30	

$$\mathcal{E} = \left\{ \lambda^s \mid (\lambda^s - \lambda_c)^\top P^{-2} (\lambda^s - \lambda_c) \leq \Delta, \quad \text{ for } s = 1, \dots, N \right\}$$

NYISO Data: Ellipsoidal II

Ellipsoidal Uncertainty Set of Electricity Prices — ${f P}$ as covariance matrix

Δ (scaled)	0	1	2	3	4	5	6
Robust profit Actual profit	223.36 -17.79		86.33 10.30		25.23 13.54	8.38 6.60	0.00 0.00

Figure: Ellipsoidal uncertainty set of electricity prices – ii, $\Delta=2$.

Conclusions

- how do we create incentives to deter market manipulation
- modelling the uncertainty in forecasting data
- presented mostly only partial results

References

- [1] FERC, Participation of distributed energy resource aggregations in markets operated by regional transmission organizations and independent system operators, order 2222, 2020. [Online]. Available: https://www.ferc.gov/sites/default/files/2020-09/E-1_0.pdf.
- [2] P. Hansen, B. Jaumard, and G. Savard, "New branch-and-bound rules for linear bilevel programming," SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 5, pp. 1194–1217, 1992.
- [3] S. Borenstein, "Understanding Competitive Pricing and Market Power in Wholesale Electricity Markets," The Electricity Journal, vol. 13, no. 6, pp. 49–57, Jul. 2000, ISSN: 10406190.
- [4] B. Xu, M. Korpås, and A. Botterud, "Operational valuation of energy storage under multi-stage price uncertainties," in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 55–60.

Backup slides

Strategic Capacity Withholding Differentiate

Proposition

Given a series of prices $\hat{\lambda}_t$ throughout the period \mathcal{T} , a **strategic price taker** makes bidding decisions $\{p_t^*,\ b_t^*\}$ based on profit-maximization model. Denote the set of discharge withholding intervals $\{u \in \mathcal{T} | \mathbbm{1}_{\{0 < p_u < \bar{P}\}} = 1\}$ and charge withholding intervals $\{v \in \mathcal{T} | \mathbbm{1}_{\{0 < b_u < \bar{P}\}} = 1\}$, then the bidding decisions satisfy:

- if the unit discharges at capacity during interval x, i.e., $p_x^* = \bar{P}$, then $\hat{\lambda}_x > \hat{\lambda}_u$ and $\hat{\lambda}_x > \frac{\hat{\lambda}_v}{n^2}$,
- ② if the unit charges at capacity during interval y, i.e., $b_y^* = \bar{P}$, then $\hat{\lambda}_u > \frac{\lambda_y}{\eta^2}$ and $\hat{\lambda}_v > \hat{\lambda}_y$,
- $\textbf{9} \text{ if the unit is idle during interval } z \text{, i.e., } p_z^* = b_z^* = 0 \text{, then } \frac{\lambda_z}{\eta^2} > \hat{\lambda}_u > \hat{\lambda}_z \text{ and } \\ \hat{\lambda}_z > \hat{\lambda}_v > \hat{\lambda}_z \eta^2.$

Back up slides 48

Back up slides 49