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Smart but stochastic

• Renewables and smart devices are leading to a 
paradigm shift in grid operations.
• Greater Variability/intermittent
• Lesser inertia/stability
• More measurements and data-driven capabilities

• Need: faster but risk-aware data-driven 
decision making

Energy Infrastructure of the future: the case for resilience

Global new generation



Transmission Grid Optimization under uncertainty

Optimal Power Flow: minimize generation 
costs while satisfying injection/demand, 
technical constraints

Problem:

       

                Non-linear power flow physics

Safety Constraint

Cost

Hard to Solve generally:

✓ Approximate analytical optimization 
       (linear models, Gaussian uncertainty)
✓ ML surrogates + validation 

ML based: Jalali, Pareek, Velloso, Zamzam, Singh, Kekatos, Baker, Bernstein, 
van- Hentenryck, Fioretto, Donti, Chatzivasileiadis, Misra, Nagarajan, Zhu, 

Qiu ….(incomplete)



Work-Flow for reliable grid decisions

       

                
Determine state variables 
for uncertainty realizations

generator set-point +feedback policy

Empirical risk of constraint 
violation is okay (Hoeffding’s)

Every 5- 15 mins:

       

                

Stop

Yes

No



Improvements in the Work-Flow

       

                
Determine state variables 
for uncertainty realizations

generator set-point + feedback policy

Empirical risk of constraint 
violation is okay

Every 5- 15 mins:
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• Optimization with Hard non-convex/ non-
linear constraints

• Needs to be solved fast

• Limited training data if system changes  



       

                
Determine state variables 
for uncertainty realizations

generator set-point +feedback policy

Empirical risk of constraint 
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500 bus system, 95% confidence

4205 sec, 20k AC-PF solves

• VOLTAGE is implicit, non-linear function of Injection

Improvements in the Work-Flow
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a. Can we design ML optimization models that 
use limited data for solutions with confidence?

Research Question:

b. Can we design injection S → voltage V map 
for faster risk assessment using limited data?

Solution: Bayesian machine learning
 a. Semi-supervised Bayesian Neural network for OPF

 b. Network-aware Gaussian Process for voltage 
maps



• Evaluate Posterior of parameters given prior and 
data

• Estimate Posterior prediction of output for new 
input

Solution: Bayesian machine learning
 a. Semi-supervised Bayesian Neural network for OPF

 b. Network-aware Gaussian Process for voltage 
maps

Parameters: w, input: x, output: y 



       

                

b. Can we design a data-driven input-output (injection S → voltage V) map?

Properties of a `good’ approximator:

• Explicit  S → V

• Easy to Evaluate, Differentiable

• Interpretable in terms of network structure

• Re-trainable/ transferable 



       

                

Properties of a `good’ approximator:

• Explicit  S → V

• Easy to Evaluate, Differentiable

• Interpretable in terms of network structure

• Re-trainable/ transferable 

• Non-parametric model for V as function of injection s

Squared Exponential  Kernel

Gaussian Process Regression for injection S → voltage V



       

                

Gaussian Process Regression for injection S → voltage V

• Non-parametric model for V as function of S

Squared Exponential  Kernel

• Learn the Kernel parameters using Maximum 
Likelihood on training data

• Prediction for new injection sample



• Prediction

• No network dependance

• Scales as O(N3) with samples

• Can we improve further?

Network scale (Full) Gaussian Process is slow

Squared Exponential  Kernel

500 random trials for 500-node network 
          Testing 1000 out-of-sample data points.



• Additive Kernels over node-
neighborhoods

• Why?

• Neighboring injections have 
correlated effect on voltage

•  Effect of far away injections is 
approximately independent

• Dimension Reduction

• Effective input dimension is  
max. vertex degree

Vertex-Degree Kernel (VDK) GP

Idea of Vertex Degree Kernel (VDK) 

500 random trials for 500-node network 
          Testing 1000 out-of-sample data points.

3X reduction



• Select training samples iteratively to 
maximize information gain/variance

• Hard:

• Finding maximum variance point for large-
dimensional input, non-trivial

• Network–swipe Active Learning (soln)

• Leverage VDK-GP’s structure for 
maximizing iteratively over graph hops

• After a few hops, no Kernel overlap 
between nodes (can be parallelized)

• Low-dimensional sub-kernels: numerical 
optimization works fine

VDK-GP with Active Learning (AL) for further gains!

Idea of Network-Swipe Active Learning



• Sample needed: GP >> VDK-GP >> AL VDK-GP  (GP much better than DNN)

Performance in estimating voltage in test networks

118-Bus system with 1000 out of sample data points. AL requires ~45 samples

500-Bus system with 1000 out of sample data points. AL requires ~70 samples



Violation Estimate (VE) using VDK-GP samples:

500 bus system, 95% confidence

20k AC-PF solves == 4205 sec

80k GP evaluations == 33.2 sec

(120x speedup), easily within grid 
operator limits



Violation Estimate (VE) using VDK-GP samples:

500 node grid:  90 sec v/s 4200 sec (45x speedup)

1354 node grid:  200 sec v/s 3870 sec (20x speedup)

[1] P Pareek, D Deka, S Misra, Fast Risk Assessment in Power Grids through Novel Gaussian Process and Active Learning, arXiv preprint arXiv:2308.07867.

[2] P. Pareek, D. Deka, S. Misra, Data-Efficient Power Flow Learning for Network Contingencies. arXiv preprint arXiv:2310.00763.
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a. Can we design ML optimization models that 
use limited data for solutions with confidence?

Research Question:

b. Can we design injection S → voltage V map 
for faster risk assessment using limited data?

Solution: Bayesian machine learning
 a. Semi-supervised Bayesian Neural network for OPF

 b. Network-aware Gaussian Process for voltage 
maps



ML proxy for OPF with limited training data 

• Need optimal solution and constraint feasibility

• Standard ML proxies give point estimates for an input



ML proxy for OPF with limited training data 

• Need optimal solution and constraint feasibility

• Standard ML proxies give point estimates for an input

• Goals:

✓ Probabilistic solution with estimated confidence/variance

• Overcome limited labeled data (for feasibility)

• Bayesian Neural Network (BNN) for OPF Proxy: 

• Static weights

• Maximum Likelihood (MLE)

• Random weights (prior/posterior)

• Maximum Aposteriori (MAP)

Jospin, Laurent Valentin, et al. "Hands-on Bayesian neural networks—A tutorial for deep learning users." IEEE Computational Intelligence Magazine 
17.2 (2022): 29-48.

Labeled training data

Solved using variational inference (VI) 



ML proxy for OPF with limited training data 

• Need optimal solution and constraint feasibility

• Standard ML proxies give point estimates for an input

• Goals:

✓ Probabilistic solution with estimated confidence/variance

✓ Overcome limited labeled data (for feasibility)

• Bayesian Neural Network (BNN) for OPF Proxy: 

• Random weights (prior/posterior)

• Maximum Aposteriori (MAP)

Labeled training data

Feasibility Enhancement 
(unlabeled data, true value is 0)



Bayesian Neural Network (BNN) for OPF Proxy 

• Semi-supervised Sandwiched training (optimality and feasibility):

Labeled loss Unlabeled loss

Monte-carlo estimator via 
sampling 



Bayesian Neural Network (BNN) for OPF Proxy 

• Preliminary results for 57 bus system:

• Outperforms DNN at low labelled samples and low training time

1000 sec total training, 20k unsupervised samples, BNN on Numpyro, DNN on Pytorch



Bayesian Neural Network (BNN) for OPF Proxy 

• Preliminary results for 57 bus system:

• Outperforms DNN at low labelled samples and low training time

100 test instances for 57-Bus, 1000 labeled samples, 1000 sec for training, no projection in BNN 

[3] P. Donti, D. Rolnick, and J. Z. Kolter. Dc3: A learning method for optimization with hard constraints. In International Conference on Learning 
Representations, 2021. 
[21] A. S. Zamzam and K. Baker. Learning optimal solutions for extremely fast ac optimal power flow. In 2020 IEEE international conference on 
communications, control, and computing technologies for smart grids (SmartGridComm), pages 1–6. IEEE, 2020. 
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a. Bayesian Neural networks for OPF
o More testing
o Use of confidence in follow up applications

Next Steps:

b. Network-aware GP for voltage modeling

o  Use in distribution grids (limited data)

o N-k applications 

❖ Use BNN OPF confidence values to guide Monte Carlo or 
GP based validation of bounds (better than Hoeffding)
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[1] P Pareek, D Deka, S Misra, Graph-Structured Kernel Design for Power Flow Learning using Gaussian Processes, arXiv preprint 
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Thank You. Questions!



Violation Estimate (VE) using VDK-GP samples:

500 node grid
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