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Nonlinear, nonconvex, implicit (intertwined with voltages, 
currents, line power flows, etc.)

A simple closed-form approximation is important for resilient 
grid applications, e.g.,

- Solve OPF quickly for fast-timescale control in grid restoration

- Decide hosting capacities of renewable energy sources 

“Feasible”: the power injections and their 
associated voltages, currents, etc. satisfy:    

- Physical laws of circuit

- Operational limits

Feasible power injection regions in AC networks

I. A. Hiskens, R. J. Davy, 2001

“solvability”

“safety”



Prior efforts DC approximation (convex polyhedral regions)
- J. Zhao, T. Zheng, E. Litvinov, 2014. 

- W. Wei, F. Liu, S. Mei, 2014. 

• Simple computation

• DC is coarse for distribution networks

AC solvability proved by fixed point theorems
- S. Bolognani, S. Zampieri, 2015. (Banach)

- C. Wang, A. Bernstein, J.-Y. Le Boudec, M. Paolone, 2016. (Banach)

- K. Dvijotham, H. Nguyen, K. Turitsyn, 2017. (Brouwer)

- J. W. Simpson-Porco, 2017. (Brouwer)

• Accurate AC models, reliable results

• How to incorporate safety limits?

Convex optimization for inner approximations
- M. Nick, R. Cherkaoui, J.-Y. Le Boudec, M. Paolone, 2017. (Tightened-relaxed SOC)

- H. D. Nguyen, K. Dvijotham, K. Turitsyn, 2018.  (Linear bounds for nonlinear terms)

- N. Nazir, M. Almassalkhi, 2019. (Constant estimates for nonlinear terms)

• Both solvability and safety are addressed

• Explore feasible region in a specific shape/direction of the power-injection vector

A review: 
Molzahn, Hiskens, 2017 

[Chapter 4.5] 



This work

A closed-form polyhedral approximation of feasible power 

injection regions in radial AC networks

- Simple form and moderate computation

- Built through dual second-order cone program (SOCP), a convex 
program that preserves nonlinearity of AC power flow

- Fulfills both solvability and safety

- No need to specify a shape/direction of power-injection vector 



Problem statement

Active/reactive power injections: 𝑝, 𝑞 ∈ ℝ2𝑁

State 𝑥 ≔ 𝑣, ℓ, 𝑃, 𝑄 ∈ ℝ4𝑁

𝑁 = number of lines 

=  number of nodes excluding root/slack node

AC dist-flow equations for a radial network 

(Solvability): [Baran, Wu, 1989] 

Safety limits:

nodal voltage magnitudes

on-line current magnitudes

……

……



Problem statement
Let 𝑝, 𝑞 = 𝑑, 𝑢 ∈ ℝ2𝑁,   2𝑁 = 𝐷 + 𝑈

• Known constant injections: 𝑑 ∈ ℝ𝐷

• Unknown variable injections: 𝑢 ∈ ℝ𝑈

A power-injection vector 𝑢 is feasible if 

there exists 𝑥 = (𝑣, ℓ, 𝑃, 𝑄) such that 

𝑥; 𝑑, 𝑢 = (𝑥; 𝑝, 𝑞) satisfies (1)(2).

The feasible power injection region is

AC dist-flow equations for a radial network 

(Solvability): [Baran, Wu, 1989] 

Safety limits:

Our goal: find a closed-form 

approximation of 



Problem statement 

AC dist-flow equations for a radial network 

(Solvability): [Baran, Wu, 1989] 

Safety limits:

Feasibility problem for 𝑢:

Slack variables

An equivalent definition of the feasible 

power injection region:

where fp(𝑢) is the min. obj. val. of FP(𝑢)



Step 1: Convex relaxation of feasibility problem 

Feasibility problem for 𝑢:

Slack variables

An equivalent definition of the feasible 

power injection region:

where fp(𝑢) is the min. obj. val. of FP(𝑢)

SOCP relaxation:

Slack variables

SOCP-relaxed feasible region:

where fp′(𝑢) is the min. obj. val. of FP′(𝑢)



Step 2: Dual SOCP 

SOCP relaxation:

SOCP-relaxed feasible region:

where fp′(𝑢) is the min. obj. val. of FP′(𝑢)

Dual SOCP:

Slater’s condition, i.e., (strict) feasibility holds for 

FP′(𝑢) Strong duality

An equivalent definition of the SOCP-relaxed 

feasible region:

where dp′(𝑢) is the max. obj. val. of DP′(𝑢).

Slack variables



Step 3: Closed-form approximation of  

Main idea of Alg. 1:

- Start with an over-estimate convex polyhedron;

- Traverse its vertices; for each vertex 𝑢, solve 

DP′ 𝑢 ; if dp′ 𝑢 ≤ 0, then 𝑢 ∈ 𝑈′ and is not 

checked again.

- Record the vertex 𝑢 with highest dp′ 𝑢 > 0, 

i.e., violating        the most; add a cutting plane to 

remove this 𝑢; update polyhedron and vertices;  

- Terminate Alg. 1 if dp′ 𝑢 ≤ 0 for all vertices 𝑢

(or if maximum number of iterations is reached); 

otherwise Repeat.



Step 3: Closed-form approximation of  

dp′ 𝑢 = 0, i.e., 𝑢 ∈ 𝑈′, 
for all vertices 𝑢

Corollary: If  𝑈′ is not a polyhedron, then Algorithm 1 cannot

terminate in a finite number of iterations with 𝑑𝑝𝑚𝑎𝑥
′ = 0.



Step 4: Removing SOCP-inexact injections from

෩𝑈

𝑈

Consistent with the “load over-satisfaction” condition 

for exact SOCP relaxation of OPF



Step 4: Removing SOCP-inexact injections from

An approximate definition from Dual SOCP:

Due to complementary slackness,                 . 

Focus on        as a good approximation of      . 



Step 4: Removing SOCP-inexact injections from

Tighten the dual feasible set to exclude 𝜆𝑞 = 0:

For                   the tightened Dual SOCP       

should attain max. value strictly lower than 0.

In Alg. 2, this requirement is represented by 



Alg. 2 returns a convex polyhedral approximation of ෩𝑈𝑑 (or ෩𝑈);

However, ෩𝑈 is generally nonconvex;

Moreover, output of Alg. 2 is sensitive to (𝛿, 𝜂).

Proposed heuristic:

- Run Alg. 2 multiple times with different (𝛿, 𝜂)

- In each run, 𝛿 is a nonnegative perturbation to the dual optimal 

at one vertex of 𝑈𝑝𝑜𝑙𝑦
′ (from Alg. 1)

- The union of multiple Alg. 2 outcomes serves as an 

approximation of ෩𝑈

Step 4: Removing SOCP-inexact injections from



Preliminary numerical results

𝑢1

𝑢2

Alg. 1 converges in 26 iterations (263 seconds) to 

the SOCP-relaxed feasible region 

Max. dual obj. value 

over all the vertices



Preliminary numerical results

Left: Feasible region 𝑈 and its SOCP relaxation 𝑈′ = 𝑈 ∪ ෩𝑈 found by 

checking sample points (close to actual cases)

Right: Alg. 1 output removing multiple Alg. 2 outputs.   

෩𝑈

𝑈 𝑈 𝑈𝑝𝑜𝑙𝑦
′



Summary

A closed-form polyhedral approximation of feasible power 

injection regions in radial AC networks

- Model: nonlinear dist-flow

- Feasibility problem → SOCP relaxation → Dual SOCP → relaxed 

feasible region (Alg. 1)

- Heuristic to remove SOCP-inexact power injections (Alg. 2)

- Preliminary numerical results: simple form, moderate 

computation, relatively accurate

Limitations and future work: A better-justified design (rather 

than empirical heuristic) to remove SOCP-inexact power 

injections
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