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Background and Motivation 

Outline 

General overview of aggregators/virtual power plants/DSOs 

Model Building blocks 
(i) a wholesale market (LMPs); 

(ii) individual prosumers’ MDP problem 

Mean-feld game of multiple prosumers 
(i) existence of a mean-feld equilibrium (MFE); 

(ii) a heuristic algorithm 

Numerical results 
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Background and Motivation 

Part I – Conceptual Framework 
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Background and Motivation 

Virtual Power Plant (VPP) Business Models 
“VPPs are aggregations of DERs that can balance electrical loads and provide 
utility-scale and utility-grade grid services like a traditional power plant.” 

Source: DOE. Pathways to Commercial Liftof: Virtual Power Plants. September, 2023 
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Background and Motivation 

Companies Provide VPP Services 

Source: DOE. Pathways to Commercial Liftof: Virtual Power Plants. September, 2023 
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Background and Motivation 

Our Focus: VPPs into Wholesale Markets 

6/ 26Source: DOE. Pathways to Commercial Liftof: Virtual Power Plants. September, 2023 
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Background and Motivation 

VPP to Wholesale Approach 1: Direct Load Control 
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Background and Motivation 

VPP to Wholesale Approach 2: Decentralized 
Aggregation 
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Background and Motivation 

Key Challenges of the Decentralized Approach 

Repeated interactions 

Lacks of expertise/resources/time to participate 

The problem with energy storage is hard 

Distribution system feasibility (outside the scope of this work) 
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Background and Motivation 

Part II – Models 
II.1 Wholesale market model 

II.2 Prosumer’s MDP 
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LMPs

LMPn
t := Pn(B1t , . . . ,B

N
t ) =

∂L
∂Bn

t

= λ−
LX

l=1

PTDFl,n(µl − µ
l
).

Background and Motivation 

The Wholesale Market Model and LMPs 

Economic Dispatch Problem 

NX 
nmin Cn(g ) − minimize total generation costt 

g⃗t n=1 

N N InX XX 
ns.t. g ≥ bn − supply/demand balancing (dual : λ)t i,t 

n=1 n=1 i=1 

N InX X 
n bn− b ≤ PTDFl,n(g − ) ≤ b ∀l ∈ {1, ..., L}Fl t i,t Fl , 

n=1 i=1 

− transmission constraints (dual : µl , µ )
l 

n0 ≤ g ≤ Gb n, ∀n ∈ {1, ..., N}, − generation capacity constraints t 
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Background and Motivation 

Lipschitz Continuity of LMPs w.r.t. Demand 

Assumption: LICQ PIn bnrepresent the vector (Bt 
1 , . . . , Bt

N ), with Bt
n = i=1 i,t . Let X (Bt ) denote the 

feasible region of the Economic Dispatch problem. We assume that for all t 
and for all Bt ∈ FB , the linear independence constraint qualifcation (LICQ) 
holds at all points in X (Bt ) 

Lipschitz Continuity of LMPs 

Proposition. Assume that the generation cost function Cn(·) is a strongly 
convex quadratic function in the form of Cn(g) = 

2
1 αng 2 + βng + γn, with 

αn > 0 for all n = 1, . . . , N. Under the LICPQ Assumption, with Bt ∈ FB , the 
LMP at each node n = 1, . . . , N, Pn(Bt ), is a single-valued function and 
Lipschitz continuous with respect to Bt . 
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State Variables/Observations: (i) net load Qθ
i,t – random variable, can be > 0 or

< 0; (ii) storage state of charge (SoC): ei,t ∈ [0, 100%] – state variable
transition:

ei,t := E(ei,t−1, ai,t−1)

= max{min{ei,t−1 + ai,t−1, 1}, 0}, t = 1, 2, . . . ,

Chargin/discharging Efciency:

Figure: Efciency w.r.t charging speed [Amoroso&Cappucino12]

Background and Motivation 

The MDP of Prosumer i of Type θ 

Action: ai,t ∈ [−100%, 100%] charging (ai,t > 0)/discharging (ai,t < 0) 
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Background and Motivation 

Prosumer’s MDP (cont.) 

Chargin/discharging Efciency (cont): 

( 
α0 + αd · ai,t , if ai,t < 0,

η(ai,t ) = 
α0 − αc · ai,t , if ai,t ≥ 0, 

Prosumer’s bids: 

θbθ ) = i,t (ei,t , ai,t , qi,t  θ � 
Qθ + η(ai,t )e · max − ei,t , ai,t ,i,t 

if ai,t < 0 (discharging), � 
θe · min 1 − ei,t , ai,t 

Qi 
θ
,t + , 

η(ai,t ) 
if ai,t ≥ 0 (charging). 
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One-stage Reward:

Rθ
i,t(si,t , ai,t , q

θ
i,t |p

∞
H(t)) = −bPn(θ)

t (p∞H(t))× bθi,t(si,t , ai,t ,Q
θ
i,t),

Value Function and Bellman Equation:

Vπθ

h (sh, p
∞) = E

" ∞X
t=h

βt−1Rθ
t (st , at ,Q

θ
t |p∞t ) at ∼ πθ

h=H(t), sh, p∞

#
.

Vπθ∗

h (s, p∞) = max
a∈A

�bRθ(s, a|p∞) + βVπθ∗

h+1 (E(s, a), p
∞)

�
,

����

–

Background and Motivation 

Prosumer’s MDP Population Profle and Reward 

Population profe: (H(t) maps from time period t to an hour of the day h) 

I θX 
I θ 1 

pt (S, A, H(t)) = I{si,t ∈S} × I{ai,t ∈A}I θ 
i=1 

∞,θLet p be the limit as I θ , t →∞ for all θ and h ∈ {1, . . . , 24}. This limith 
represents a probability distribution over the joint state and action space. 
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Single-valuedness and continuity:

Lemma. Under the LICQ Assumption, for an agent of type θ, the optimal
stationary policy mapping Πθ∗ (s, p∞) is single-valued and continuous with
respect to (s, p∞).

Background and Motivation 

Single-valuedness of a Prosumer’s Optimal Policy 

Optimal policy mapping: 

� � 

Πθ ∗ 
(s, p ∞) = arg max Rbθ (s, a|p ∞) + βV π

θ ∗ 

(E(s, a), p ∞) .h h+1 
a∈A 
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Background and Motivation 

Part III – Mean Field 
Equilibrium and Algorithm 
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�
dp∞,θ

h−1 (s, a).

Background and Motivation 

MFE Defnition 

h i 
Defnition: A collection of stationary strategy π∗ := [πθ ∗ 

]θ∈Θ, · · · , [πθ ∗ 
]θ∈Θh 1 i 24 

∞,θ ∞,θand a population profle p∞ := [p ]θ∈Θ, · · · , [p ]θ∈Θ ∈ P(S)|Θ|×24 
1 24 

constitute an MFE if for each θ ∈ Θ and h = 1, . . . , 24, the following two 

conditions hold: 

Optimality: for a given state s ∈ S, πθ ∗ ∈ Πθ ∗ 
(s, p∞) as defned in theh h 

optimal policy mapping. 
Consistency: for all S × A ∈ B(S) ×B(A), where B(·) is the Borel algebra 
of the corresponding set, and s ∈ S , Z � � � � � � � 
∞,θp (S×A) = IS×A E s, πθ ∗ 

(s, p ∞) , πθ ∗ 
E s, πθ ∗ 

(s, p ∞) , p ∞)h h−1 h h−1 
S×A 

MFE Existence Under the LICQ Assumption, an MFE exists. 
Proof. Use Schauder-Tychonof’s fxed point theorem. 
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Background and Motivation 

A Heuristic Algorithm to Update Agents’ Beliefs 

1 

2 

3 

4 

Start with a random LMP belief for each hour of day ( [ LMP24) andLMP1, . . . [ 

starting value function approximation 

Solve the Bellman equation through value iteration 

After receiving the actual LMP for hour h on day d (denoted LMPd,h), update 
the LMP belief for hour h as follows (with α ∈ [0.5, 1]) 

[ LMPh − α · (d + 1)−0.5( [LMPh ← [ LMPh − LMPd,h), 

(If under supply or demand shocks, update the corresponding beliefs.) 

If no regeneration, repeat Step 2 and 3; if regeneration, goto Step 1. 
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Background and Motivation 

Part IV – Numerical Simulation 
and Results 
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Background and Motivation 

Simulation Setup 

Test case: IEEE-14 bus test case 

Agent types: prosumers and pure consumers on each bus 

Number of agents: 3,000 for each type on each bus (diferent buses have 
diferent types) 

Load shape: average hourly net demand (for prosumers) and gross load 
data (for pure consumers) from California Independent System Operator 
(CAISO); random noise on actual load 

Grid-level wind: fxed wind profles at diferent location with random noise 

Power plants: one at each bus with a quadratic cost function from 
[Krishnamurthy et al., 2015] 

Simulation length: 100 days 
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Simulation Results LMPs 
The FIRST 10 days 

The LAST 10 days 
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Simulation Results Battery Charging/Discharging 
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Simulation Results Total Costs 
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Background and Motivation 

Thank you! 
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