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Combined T&D Interactions are Growing

e Future Grid will rely on approaches that enable joint
operation and control of T&D resources

Source: VELCO
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Combined T&D Interactions are Growing

e Consider a sunny Spring day in VT

Vermont Net Load [MW]

00:00 24:00
Figure: Load net load in VT during
Source: VELCO the afternoons on 5/14/2023
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DER Majority Generation is a New Reality

e VT’'s net load was only 100 MW on May’ 23
- ~80% of net generation from DERSs in distribution nets

Vermont Net Load [MW]

: 24:00
00:00 Figure: DER output in Vermont

Source: VELCO greater than 500 MW.
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DER Growth in New-England is Accelerating
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Figure: Projected growth in PV within ISO-NE is
accelerating.

Source: ISO-new England
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Example: Improved Modeling DER is Critical

Event: Transmission line trip in NY resulted in a disturbance

Source: VELCO
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Example: Improved Modeling DER is Critical
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Figure: New England net load July 6,2022.

Event: Transmission line trip in NY resulted in a disturbance
Consequence: 100 MW of DERs (~15% of net VT load) tripped

Source: VELCO
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Need: Combined T&D Steady-state Analysis

e To evaluate impact of high-penetration of DERs
— Emergency operation — similar to NY line trip event

— Normal operation - asset health when continuous backflow
from distribution grids is present

e Initialization of combined T&D dynamic analysis
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Need: Combined T&D Steady-state Analysis

e To evaluate impact of high-penetration of DERs
— Emergency operation — similar to NY line trip event

— Normal operation - asset health when continuous backflow
from distribution grids is present

e Initialization of combined T&D dynamic analysis

Aggregating the resources may not work due to heterogenous
type or control of various DER devices
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SOA - Steady-state Combined T&D Analysis

e Co-simulation
— Disparate models for T&D networks
— Pros: Can mix-n-match various established tools
— Cons: Lack of convergence, and robustness

Authors Co-simulation | Co-modeling Approach
_ PowerWorld +

K. Kalsi et al. v x GridLab-D
MATPOWER +

K. Anderson et al. v x GridLab-D
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SOA - Steady-state Combined T&D Analysis

e Co-simulation

e Co-modeling
— Unified models and algorithms for joint T&D networks

Authors Co-simulation | Co-modeling Approach
K. Kalsi et al. v x PowerWorld +
GridLab-D
K. Anderson et al. v x MATPOWER +
GridLab-D
Q. Huang et al. x v Mixed sequence three
phase
A. Pandey et al. x v Equivalent Circuit
Formulation

and many more!
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SOA - Steady-state Combined T&D Analysis

Authors Co-simulation | Co-modeling Approach

K. Kalsi et al. 4 x PowerWorld +
GridLab-D

K. Anderson et al. 4 x MATPOWER +
GridLab-D

Q. Huang et al. x v Mixed sequence three
phase
A. Pandey et al. x 4

Equivalent Circuit
Formulation

and many more!

None of these approaches work when the combined T&D network

has no solution

University
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Solving Infeasible Combined T&D Nets

e System planners require clear indications regarding
why power flow simulations fail
- Where are the system weaknesses
— Where to consider adding new assets
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Solving Infeasible Combined T&D Nets

e System planners require clear indications regarding
why power flow simulations fail

Preliminaries

* For the positive sequence transmission net; concept of missing
power?, introducing slack current? using circuit simulation

* For the three-phase distribution network; identifying the weak
spots¢, identifying the problematic power flow constraints

aT. J. Overbye [2]
bM.Jereminov, Pandey, et al. [3]
CE.foster, Pandey, et al. [4]
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Problem Statement - Infeas T&D Networks

Goal: Model and simulate infeasible large-scale combined
positive-sequence T and three-phase D networks within the same
solution and modeling framework

Infeasible: A combined T&D network that cannot satisfy power
flow network constraints while satisfying device bounds
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Model: Equivalent Circuit (Ckt) Formulation

e Insight: Model and analyze combined T&D network
as an equivalent circuit?
— KCL: linear network constraints, nonlinear injection models

scalilines

@}i e | | » — %ﬁ)ﬂ£<t>m<l>ﬁ><l>méﬁ%5?<¢>
Generator Load !

Slack
Generator

Equivalent circuit representation

2A. Pandey et al. [5]
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Combined T&D Modeling — A Ckt Approach
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Combined T&D Modeling — Coupling Ckt

e Coupling circuits® model the interactions between T
and D sub-circuits using symmetrical components

R
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T = = 3/

Figure: Coupled T&D layout (coupling circuit).
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3A. Pandey et al. [6]
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Combined T&D Modeling — Coupling Ckt

e Real circuit coupling equations (primal setup)

— I Ra ] \
VE %1 vE | | Vea = Vease (V1)

R
Vib Vk{%b = Vbase(%(a2Vkﬁ))

I : : [
1 <V> Ilfc C ‘ Vkli = Vhbase (m(avlfl))

NI S

Real Coupling Circuit \

t: is the normalizing constant
a:is the 2n/3
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Combined T&D Solution: A Ckt Approach

Solving this circuit requires solving the KCL equation
at each node and maintaining voltage mag at some
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A Circuits Approach: Adding Infeas Sources
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Figure: Illustration of Combined T&D Ckt with Infeasibility Sources

of Vermont

w University Optimizing Combined T&D Infeasible Networks 23



A Circuits Approach: Adding Infeas Sources
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Optimization to Solve Infeasible Networks

e The objective is to minimize the norm of infeasibility

currents

— Feasible network: the objective will be 0; recover the power
flow solution from primal variables

— Infeasible network: the non-zero dual variables localizes the
system weaknesses

Choice of norm localizes system weakness
differently!
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Optimization to Solve Infeasible Networks

mln Z H IT Hp ) S‘ ”(Ii)ﬂ)Hp (Minimize infeasibility

source)
SEST scSD Qeca,b,c

s.t.
]:‘T(XT) _ ICZ; =0 Vst & ST (T&D power flows)
FPo(XPo)—~IPo =0 Ve {a,bc} VsgeSP

Sda 3d7

gT (XT) <0 \V/St S ST (T&D voltage bounds)
G2 o(X2q) <0 VQe€{abc} VsgeS”

Ck(XT, XD) = (0 Vk € K (Coupling constraint)
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Methodology — Optimization problem

e The choice of infeasible sources:

IR,inf —I—jII’inf if T = Iinf
T = (Pinf . jQinf)/(VR o jVI) if T = Siﬂf
(Ginf +jBinf)(VR —|—]VI) if T = Zinf

— Current infeasibility (I) introduces only linear term

— Power infeasibility (S) can localize the lack of reactive power
implicitly
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Methodology — Distributed optimization

e Centralized problem

— Unable to solve tens of millions of variables under single
machine single compute framework

e Distributed problem
— Preserve privacy between separate T&D utilities

— Inherent weak coupling between T&D allows natural
decomposition
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Methodology — Distributed optimization

e Centralized problem
e Distributed problem

In this work, we employ a distributed primal-dual interior point
method (PDIP), which follows the framework of the Gauss-Jacobi
Newton algorithm
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BBD Matrix — Distributed Framework

Transmission
System
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Figure: Coupled T&D layout bordered block diagonal (BBD) structure
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BBD Matrix — Int. and Ext. Variables
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Methodology - Distributed PDIP

Newton-step
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Methodology — Decomposed KKT equations

Newton: Decomposed KKT conditions

P Gauss step: Dual expr. for
Vs € {S",57} coupling egns. (also primal)
Vsl = Fo (X, X2 — I =0 e
. ’ 1 0]
Vasl = Vos(IZilly) = VesGa "+ v || | G 01
. . . R,D
Vs (Fs (X;nta Xliit’ )‘Z,xst) - I.:nt)T)‘?snt =0 )\k,b . 1la* 0 [)‘g’T]
. . ID| — 2 1T
_’uzsntgs(int) +e=0 )\k,b kK|l 0 « )\k
R,D a 0
int > O )\k’,c O 84
/’LS —_— AI,D . -
. | ke _
gs(int) S O
k is the normalizing constant;

a: is the 2r/3.
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Results — Experimental Setup

e Use case:. Reactive power compensation

— Corrective action to improve voltages on transmission net
due to increased loading on the distribution nets

Table: Test cases description

Name T&D test case
Case-118_31 118-bus (T) + GC 12.47.1
Case-2869_31 PEGAS2869 (T) + GC 12.47.1

Case-25k_1420 ACTIVEsg25k (T) + D-net

D-net: Synthetic urban meshed network with 1420 three-phase nodes (4260
single-phase nodes)
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Results - ADMM , D-PDIP, C-PDIP

Algorithm Network Obj. Iter. Time (s)
ADMM Case-118-31 0.353 /1 1.27
D-PDIP Case-118-31 0.352 28 0.98
ADMM Case-2869-31 Did not converge
D-PDIP Case-2869-31 1.103 32 8.63
ADMM Case-25k-1420 Did not converge
D-PDIP Case-25k-1420 0.109 88 102.04

ADMM runs terminated after 1800 sec.

University
of Vermont
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Solving Real Combined T&D Network

e Combined T&D net with

—— Two Phases

real VT dist. feeder B

e Higher electrification -
network infeasibility

— Goal: Localize weak spots

M
L

Table: Test cases summary

Name T&D test case

) ) 25k (T) + South-HERO
Case-25k-8.5k (~8.5k 3P)

Figure: VT Distribution Feeder
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Solving Real Combined T&D Network

Single Phase
—— Two Phases - 0.7
—— Three Phases y
A Infeasible Nodes bl 2
~a 1
, e
| . ®sspome 7 . - 0.6
b a~

©
&)

Infeasible source magnitude

With L2 norm, the infeasibility is
distributed throughout the system

of Vermont
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Solving Real Combined T&D Network

- Single Phase
—— Two Phases L 0.7
—— Three Phases

A Infeasible Nodes & LU

Infeasible source magnitude
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Single Phase
—— Two Phases
—— Three Phases
A Infeasible Nodes

With L1 norm, the infeasibility is
localized to few locations

- 350

- 300

250

200

150

100

50

38

Infeasible source magnitude



Concluding Remarks

e Interactions between T&D nets are growing and grid
operators and planners are looking for new tools:
— Robust: Methods converge with some guarantee
— Scalable: Can solve real setups with >10e6 variables
— Generalized: Apply to a variety of problems
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