H2A Hydrogen Production Model: Version 3.2018 User Guide (DRAFT)

M. Penev, G. Saur, C. Hunter, J. Zuboy

The H2A Production Model analyzes the technical and economic aspects of hydrogenproduction technologies. The model estimates the hydrogen selling price (or levelized cost) using a standard discounted-cash-flow methodology and a specified after-tax internal rate of return from the production technology. Users have the option of accepting default technology input values—such as capital costs, operating costs, and capacity factor—from established H2A production technology cases or entering custom values. Users can also modify the model's financial inputs.

The H2A Production Model is actually two models, which are very similar. The primary difference is that the central model can perform carbon sequestration calculations, whereas the distributed model performs refueling station compression, storage, and dispensing calculations. The models and detailed technology cases can be downloaded from www.hydrogen.energy.gov/h2a production.html.

Compared with the previous version (version 3.1), this new version (version 3.2018) of the H2A Production Model features several updates and improvements. Updated analyses include those related to carbon capture and sequestration; compression, storage, and dispensing (to reflect the latest Hydrogen Delivery Scenario Analysis Model [HDSAM]); and upstream emissions (to add time sensitivity and reflect the most recent Greenhouse gases, Regulated Emissions, and Energy use in Transportation [GREET] model). Monte Carlo analysis has been added to the Risk Analysis worksheet in the central model. The Annual Energy Outlook (AEO) 2017 reference case is now available in the model, and all AEO price projections are extrapolated through 2100 using the Joint Global Change Research Institute's GCAM (formerly MiniCAM) model. The reference year for calculations has been updated to 2016. For H2A technology cases, current cases have been changed to reflect a 2015 construction year and future cases to reflect a 2040 construction year. The central coal gasification and distributed ethanol reforming cases have been transitioned from H2A version 2 to version 3. Finally, key financial assumptions were calibrated with reported industry performance for percent equity financing, return on equity, interest rate, term of debt and new federal tax rate.

This *User Guide* introduces the basic elements of version 3.2018 of the H2A Production Model and then describes the function and use of each of its worksheets.

Contents

Tips & Troubleshooting	1
General Tips	1
Solutions to Commonly Encountered Problems	2
Quick Start: Getting Around	4
Quick Start: Performing Simple Production Cost Analyses	6
Information Worksheets	8
Input_Sheet_Template Worksheet	9
Project Description	9
Table of Contents	9
Technical Operating Parameters and Specifications	.10
Financial Input Values	.10
Energy Feedstocks, Utilities, and Byproducts	.11
Capital Costs	.13
Fixed Operating Costs	.14
Variable Operating Costs	.14
Other Materials and Byproducts	.14
Other Variable Operating Costs	.15
Replacement Costs Worksheet	.16
Capital Costs Worksheet	.17
Plant Scaling Worksheet	.18
Carbon Sequestration Worksheet (Central Model)	.21
Refueling Station – GH2 Worksheet (Distributed Model)	.23
Storage and Refueling Worksheet (Distributed Model)	.24
H2A Loolkit	.25
Printing and Exporting inputs and Results	.25
Editing: Delete Feed, Utility, and Byproduct inputs	.25
	.27
Cash Flow Analysis Worksneet	.30
RISK ANALYSIS WORKSNEEL	.31
Energy Feed & Utility Prices Worksheet	.34
ACO Deta Worksheet	.30
AEO Dala Worksheet	.30
Beferences	.31 27
Relefences	.37
Depreciation Worksheet	.39
Constants and Conversions Worksheet	.40
Lists Worksheet	.41
Technical Support	. <u>-</u> 2
Appendix 1: Carbon Sequestration Calculations and Sources	ΔΔ
References	.44 49
Appendix 2 ⁻ Distributed Model Version 3 Updates	. 10
Introduction	51
Hydrogen Compression, Storage, and Dispensing	.51
Nth-Plant Assumptions	.52
AACE Cost Guidance	.53
General and Financial Input Values	.54

Reference Year	54
Assumed Start-up Year	55
Direct Capital Costs	55
PSA Cost	56
Indirect Capital and Other Costs	56
Site Preparation	57
Process and Project Contingency	58
Initial Spares and Pre-Paid Royalties	58
Installation	58
Feedstock Prices	58
References	
Appendix 3: Central Model Default Values and Assumptions	61
Appendix 4: Distributed Model Default Values and Assumptions.	63

Tips & Troubleshooting

General Tips

- Before you start modifying the model, save the file under a new name. This will make it simple to go back to the unmodified model later if necessary.
- If the file you are working with accumulates numerous errors, or if you delete information that you later find you need, etc., it might be easier to discard the file and start afresh with the original version of the model and/or production technology case. If you have not kept an original version, download the model again from the H2A Web site: <u>www.hydrogen.energy.gov/h2a_production.html</u>.
- The model requires the use of macros. Make sure macro use is allowed in Excel.
- Throughout the model, orange cells are meant to accept static user-input values or userdefined equations, and blue cells are calculated automatically by the model. Use care if you overwrite the blue calculation cells with static values or your own equations; once overwritten, the original equation information is permanently deleted. Green cells are for user-input information and notes. Yellow cells contain H2A information and default values. Red cells indicate an error has occurred and inputs must be checked.
- Do not type values into cells with drop-down menus. Select only from values in the menu.
- If it is not obvious how to close or move on past a pop-up window, you can close it by clicking the 🔀 in the upper right corner.
- Mouse over small red triangles for useful notes as shown below.

Feedstock Type	Source	Source Year (for original price data)	H2a Reference Year	Unit Fee Price	s for dstock e Table	HHV/LHV Source	HHV/L
Commercial Natural Gas	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data	see Energy Feed Tab	dsteward: Source for original p data	rice	7)/GJ LHV	dsteward: Enter as \$(reference year)/GJ	
Industrial Natural Gas	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data	see Energy Feed Tab			7)/GJ LHV]
Industrial Natural Gas	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data Energy Information Administration	see Energy Feed Tab			7)/GJ LHV		

• The *Input_Sheet_Template* worksheet works best (has the least likelihood of errors) when you fill it out as completely as possible, starting with the top and working down. After filling out the worksheet completely, the model will automatically calculate the cost of hydrogen.

User Guide Symbols

Follow instructions carefully to prevent errors or unwanted results.

Skip this section if you are a novice user or want to perform only simple analyses.

users

Read for useful information.

Solutions to Commonly Encountered Problems

	Problem	Possible Solution	Relevant Worksheets	User Guide Sections
1.	Clicking the <i>Use Default Values</i> button unintentionally replaced some of your user-defined values.	To retain user-defined values while filling in blank cells with default values, click <i>No</i> in the <i>Use Default Values</i> pop-up window.	Input_Sheet_Template Carbon Sequestration	<i>Table of Contents</i> (p. 9)
2.	After deleting energy feedstocks, utilities, and byproducts or other materials and byproducts in the <i>Input_Sheet_Template</i> worksheet using Microsoft Excel's delete functionality, you received null results.	Do not use Excel's delete functionality to delete entries under <i>Energy</i> <i>Feedstocks, Utilities, and Byproducts</i> or <i>Other Materials and Byproducts</i> within the <i>Input_Sheet_Template</i> worksheet. If you have used Excel's delete functionality in one or both of these sections, discard your current file and start afresh with the original version of the model and/or production technology case. In the future, make sure to use the H2A Model's <i>Delete</i> button to delete entries within these sections.	Input_Sheet_Template	Energy Feedstocks, Utilities, and Byproducts (p. 11) Other Materials and Byproducts (p. 14)
3.	You did not perform the actions described in problem 2 above, but you still received null results.	Make sure to enter all critical values in the <i>Technical Operating Parameters</i> <i>and Specifications</i> and <i>Financial Input</i> <i>Values</i> sections before completing the rest of the <i>Input_Sheet_Template</i> worksheet. In particular, make sure values are present for reference year, startup year, and plant capacity.	Input_Sheet_Template	<i>Variable Operating</i> <i>Costs</i> (p. 14)

	Problem	Possible Solution	Relevant Worksheets	User Guide Sections
4.	You used the <i>Delete</i> button to delete an entry under <i>Energy</i> <i>Feedstocks, Utilities, and</i> <i>Byproducts</i> or <i>Other Materials</i> <i>and Byproducts</i> , and more entries—or different entries— were deleted than you had intended.	Be careful to choose the correct item from the <i>Delete</i> drop-down menu within the <i>H2A Toolkit</i> . It deletes all entries of the selected type.	Input_Sheet_Template H2A Toolkit	Energy Feedstocks, Utilities, and Byproducts (p. 11) Other Materials and Byproducts (p. 14)
5.	You performed a sensitivity analysis, and the resulting tornado chart contained bad or nonsensical results.	Try switching the values you entered for the values "lowering" and "increasing" hydrogen cost. It is not always obvious how changing the value of a variable will affect the hydrogen price.	Risk Analysis	Risk Analysis Worksheet (p. 31)
6.	You modified the <i>Lists</i> worksheet, and now the model does not work properly.	Do not add, delete, or change anything on the <i>Lists</i> worksheet. Modifying the lists can disable or introduce major errors into the model. If you have modified the lists, discard your current file and start afresh with the original version of the model and/or production technology case.	Lists	Lists Worksheet (p. 42)

Quick Start: Getting Around

The spreadsheet is organized into numerous worksheets, which have tabs color coded according to their function, as shown below for the central model. The schematic on the following page shows a generalized data flow among the worksheets for the central model.

Overv		B	С		D	
2 3	Central Hyd	rogen Production -	Project Inform	ation	Input Sheet	
4		Current	t (2010) Hydrogen from	Natural Gas without		
5		Title: CO2 Ca	apture and Sequestration	n		
7		Contact: Olga Ar	ntonia			
8		Contact phone: 303 275	5 3755 tonia@nrel.cov			
10		Organization: NREL				
11		Date: 5-Dec-	11			
12		Web Site: http://w	ww.hydrogen.energy.go	v/h2a_production.html		
14	Plant Des	ign Capacity (kg/day):		379,387		
15	Primary Produ	uct Feedstock Source: Industri	ial Natural Gas			
17	Seconda	ary Feedstock Source: None	rd fossil energy sources			
19	Co	onversion Technology: Steam	reformer, quench, shift,	PSA		
20	s	econdary By-Product: Steam	export			
22	Based on Number	of Plants Installed per				
23	н	2 Onsite Storage Type N/A				
24	A	ssumed plant location: Mid US	A			
26	Reporting Spreadsh	teet Change History		L		
27	Date spreadsheet c	reated / modified Name	1	C	Comments	
			7			
			/			
		Title				
		Title	ion	Informa	tion	
		Title Descript Process	ion	Informa	tion	
	1	Title Descript ProcessF	tion flow	Informa	tion	
ost users will		Title Descript ProcessF Input Sheet T	cion cion ciow cemplate	Informa	tion	
ost users will d/modify cells		Title Descript ProcessF Input Sheet T Capital C	tion Flow Template Flosts	Informa	tion	
ost users will d/modify cells thin the input		Title Descript ProcessF Input Sheet T Capital C Replacemen	cion Filow Template Tosts The Costs	Informa	tion	
ost users will d/modify cells thin the input orksheets	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemen Plant Sca	cion Filow Femplate Fosts fot Costs faling	Informa	tion	
ost users will d/modify cells thin the input orksheets ark green	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemer Plant Sca Carbon Seque	cion Flow Template Tosts Tot Costs Faling Estration	Informa	tion	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemer Plant Sca Carbon Seque Cash Flow A	cion Flow Template Tosts The Costs The Costs T	Informa	tion	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemen Plant Sca Carbon Seque Cash Flow A Result	cion Flow Femplate Fosts fut Costs fut Costs fling festration funallysis ts	Information	tion :s	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemer Plant Sca Carbon Seque Cash Flow A Result Tornado O	cion Ciow Cemplate Costs	Informa Input Result	tion :s	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemer Plant Sca Carbon Seque Cash Flow A Result Tornado C Energy Feed & U	cion Cion Ciow Cemplate Costs Aling estration Analysis ts Chart Dility Prices	Informa Input Result	tion :s	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemer Plant Sca Carbon Seque Cash Flow A Result Tornado C Energy Feed & U Non-Energy Mat	cion Femplate Fosts Aling estration Analysis ts Chart Utility Prices terial Prices	Informa Input Resul Data & Prov	tion s ts	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemen Plant Sca Carbon Seque Cash Flow A Result Tornado C Energy Feed & U Non-Energy Mat	cion Flow Femplate Fosts Int Costs Aling Estration Analysis ts Chart Utility Prices terial Prices	Informa Input Resul Data & Proj	tion s ts perties	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemen Plant Sca Carbon Seque Cash Flow A Result Tornado C Energy Feed & U Non-Energy Mat AEO Da	tion Femplate Fosts at Costs aling estration analysis ts Chart Utility Prices terial Prices ata	Informa Input Resul Data & Pro	tion s ts perties	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemen Plant Sca Carbon Seque Cash Flow A Result Cash Flow A Cash Flow A Cash Flow A Cash Flow A Result Done Energy Feed & U Non-Energy Mat AEO Da HyARC Physical P	cion Formation Femplate fosts fosts fosts fosts fosts formation fo	Informa Input Resul Data & Proj	tion s ts perties	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemen Plant Sca Carbon Seque Cash Flow A Cash Cash Cash Cash Cash Cash Cash Cash	cion Formation Femplate fosts fosts fosts for Costs for	Informa Input Resul Data & Prop	tion s ts perties	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemen Plant Sca Carbon Seque Cash Flow A Cash Flow A Result Cash Flow A Cash Flow A Non-Energy Mat AEO Da HyARC Physical P Debt Financing C	cion Flow Femplate fosts ant Costs aling estration analysis ts Chart Utility Prices terial Prices ata colculations ata	Informa Input Resul Data & Prop Standard Calcu	tion s ts perties ulations &	
ost users will d/modify cells thin the input orksheets ark green os) only.	TIP	Title Descript ProcessF Input Sheet T Capital C Replacemen Plant Sca Carbon Seque Cash Flow A Cash Cash Cash Cash Cash Cash Cash Cash	cion Flow Femplate fosts ant Costs aling estration analysis ts Chart Utility Prices terial Prices ata colculations ata Calculations ation	Informa Input Resul Data & Prop Standard Calco Variab	tion s ts perties ulations & les	

Schematic of Data Flow among H2A Worksheets (Central Model Shown)

Quick Start: Performing Simple Production Cost Analyses

To perform a simple production cost analysis, select the *Input_Sheet_Template* tab. Accept the default (e.g., production technology case) values or enter new values into the **orange cells**. The contents of the **blue cells** are calculated automatically. Use the drop-down menus and buttons to enter information for *Energy Feedstocks, Utilities, and Byproducts* and *Other Materials and Byproducts*. Once all information is entered, the model will automatically calculate the cost of hydrogen. The *Real Levelized Values* chart at top right breaks down the total cost into individual components. Navigating to the *Results* tab will present detailed cost, energy, and emissions results.

Input_Sheet_Template Worksheet (Central Model Shown)

Results Worksheet (Central Model Shown)

		Rea	Levelized Value	s			
Table of Contents		Devenues					
Specific Item Cost Calculation		Revenues		\$1.15	\$1	.15	
Energy Data		Ş/kg H2		•			
Production Process Energy Efficie	ency	Exponsos					
Upstream Energy Usage		c (he up			\$1	.15	
Emissions Summary		\$/kg H2					
Production Process GHG Emission	ons Summary					1	
Production Process GHG Emission	ons		\$0.20 \$0.40	\$0.60 \$0.80	\$1.00 \$1.2	0 \$1.40	
Upstream GHG Emissions		Cost of Hydrog	on	Debt Inter	ost		
		Salvago Valuo	c iii	Cach for l	Norking Conital P	0007/0	
U2a Analysia B	agulta	Salvage value		Veerly De	Norking Capital K	eserve	
nza Analysis R	esuits	Byproduct Sale		Tearly Re	placement Costs		
				laxes	-		
COST PESIII TS		Feedstock Cos		Principal	Payment		
C031 RE30E13		Other Variable	Operating Costs	Decommi	ssioning Costs		
Lang Factor	2.73	Initial Equity De	epreciable Capital	Other Nor	1-Depreciable Cap	ital Costs	
		Fixed Operating	l Cost	Other Rav	v Material Cost		
Specific Item Cost Calcula	tion			Approximate Carl	oon Sequestration	Costs*	
				Cost Component	Cost	Cost	
					Contribution (\$/	Contribution	
						(¢/ terms CO2	
					kg nz)	(\$/ tonne CO2	
Cost Component	Cost Contribution (\$/kg)	Percentage of H2 Cost				Sequestered)	
Capital Costs	\$0.15	13.5%		Capital Costs	\$0.00	#DIV/0!	
Decommissioning Costs	\$0.00	0.1%		O&M Cos	t \$0.00	#DIV/0!	
Fixed O&M	\$0.07	6.3%		Energy Cos	t \$0.00	#DIV/0!	
Feedstock Costs	\$0.83	72.1%		Total	\$0.00	#DIV/0!	
				*Carbon convoctration	poste procontod in this	table de not	
Other Row Material Costs	\$0.00	0.0%		include carbon canture	costs presented in this		
Buproduct Crodite	\$0.00	0.0%		Include carbon capture	capital and operating o	0515.	
Other Variable Costs (including	\$0.00	0.078					
Other Variable Costs (including	\$0.00	9.0%					
Total	\$0.09	0.076					
Total	\$1.15						
ENERGY							
Energy Data							
		Energy Input (kWh/ka				Unit System	Real levelized
Feedstock	Energy Input (GJ/kg H2)	H2)	LHV (GJ/usage unit)	Usage (/kg H2)	Unit	Conversion	cost
		114)				Factor	0031
Industrial Natural Gas	0.165	45.790	1.055	0.156	mmBtu	1	\$ 5.60

Information Worksheets

Established H2A production technology cases contain information worksheets linked from the light-green tabs. These worksheets (*Title*, *Description*, and *ProcessFlow*) do not participate in the model's calculations but contain valuable information about the project file and the hydrogen production technology being modeled. Clicking the *Input Sheet* button on any of the information worksheets sends you to the *Input_Sheet_Template* worksheet to begin using the model.

entral Hydrogen Produ	ction - Project Information	Input Sheet
		1
	Current (2010) Hydrogen from Natural Gas without	
Title:	CO2 Capture and Sequestration	
Authors:	US DOE/NETL MD Rutkowski	
Contact:	Michael Penev	Innut Shoot
Contact phone:	303 275 3880	input oncet
Contact e-mail:	mike.penev@nrel.gov	button
Organization:	NREL	Dutton
Date:	6-Feb-18	
Web Site:	www.nrel.gov	
Plant Design Capacity (kg/day):	379,387	
Start-up Year:	2015	
Primary Product Feedstock Source:	Industrial Natural Gas	
Secondary Feedstock Source:	None	
Process Energy Source:	Standard fossil energy sources	
Conversion Technology:	Steam reformer, quench, shift, PSA	
Primary By-Product:	Steam export	
Secondary By-Product:	No	
Based on Number of Plants Installed		
per Year (per manufacturer):	None	
H2 Onsite Storage Type	N/A	
Assumed plant location:	Mid USA	
eporting Spreadsheet Change History:		
ate spreadsheet created / modified	Name	Comments

Example Title Worksheet (Central Natural Gas with no CO₂ Capture and Sequestration)

Example Description Worksheet (Central Natural Gas with no CO₂ Capture and Sequestration)

Central Hydrogen Production - Description Input Sheet
Purpose:
Steam reforming of hydrocarbons continues to be the most efficient, economical, and widely used process for production of hydrogen and
hydrogen/carbon monoxide mixtures. The purpose of this analysis is to assess the economic production of hydrogen from the steam reforming of
natural gas.
System Description:
Natural data is fed to the plant from the pipeline at a pressure of 450 psia. The data is generally sulfur-free, but odorizers with mercaptans must be
cleaned from the gas to prevent contamination of the reformer catalyst. The desulfurized natural gas feedstock is mixed with process steam to be
reacted over a nickel based catalyst contained inside of a system of high alloy steel tubes. The reforming reaction is strongly endothermic, and the
metallurgy of the tubes usually limits the reaction temperature to 1400-1700oF. The flue gas path of the fired reformer is integrated with additional
boiler surfaces to produce about 700,000 lb/hour steam. Of this, about 450,000 lb/hour is superheated to 450 psia and 750°F, to be added to the
incoming natural gas. Additional steam from the boiler is sent off-site. After the reformer, the process gas mixture of CO and H2 passes through a
heat recovery step and is fed into a water gas shift reactor to produce additional H2.
The Pressure Swing Adsorption (PSA) process is used for hydrogen purification, based on the ability to produce high purity hydrogen, low amounts
of CO and CO2 and ease of operation. Shifted gas is fed directly to the PSA unit where hydrogen is purified up to approximately 99.6%. based on
the ability to produce high purity hydrogen, low amounts of CO and CO2 and ease of operation. Shifted gas is fed directly to the PSA unit where
hydrogen is purified up to approximately 99.6%.
Analysis Methodology Summary:
Material and energy balances in ASPEN Plus; Installed equipment costing based on grass roots estimate of commercial offering; O&M
I collaborated with KIC

Input_Sheet_Template Worksheet

The *Input_Sheet_Template* worksheet is the H2A Model's primary user interface (see the screen capture on page 6). The sections below describe each of the seven sections of the *Input_Sheet_Template* worksheet in sequence as they appear in the worksheet as well as the *H2A Toolkit* (see page 25 for details on the *H2A Toolkit*). You use the *Input_Sheet_Template* worksheet to input the data the model uses for calculations, perform analyses, and access the automated functions of the model through the *H2A Toolkit* utility. After you fill out the worksheet, the model automatically calculates the cost of hydrogen. The chart at the top of the worksheet will update if any orange cells are modified. Throughout the worksheet, entries in the *Notes* column describe calculations being performed or offer guidance on user inputs.

Project Description

The first line of the *Input_Sheet_Template* worksheet lists the name of the H2A file you are using. Click the *View Description* button to view a brief project description (see page 8 for a sample *Description* worksheet).

Table of Contents

At the top of the *Table of Contents* are three buttons. The *Project Info* button sends you to the *Title* worksheet. The *Key* button describes the color coding used in the H2A Model.

The Use Default Values button links to a pop-up window, which provides two options for automatically using H2A default values. Clicking Yes replaces all Input_Sheet_Template

inputs for which default values exist with the default values. Clicking *No* enters default values only for those inputs that have default values and are blank (see illustration on page 10). Be careful when using this button so as not to replace values unintentionally.

Beneath the column of buttons, the *Table of Contents* links to the major sections of the *Input_Sheet_Template* worksheet, which are described in the subsequent sections of this *User Guide*. These sections (which vary slightly in order and wording between the central and distributed model) include the following:

- Technical Operating Parameters and Specifications
- Financial Input Values
- Energy Feedstocks, Utilities, and Byproducts
- Capital Cost
- Fixed Operating Costs
- Variable Operating Costs Other Materials and Byproducts
- Variable Operating Costs Other Variable Operating Costs.

Example of Automatically Entering Default Values in the Input_Sheet_Template Worksheet

Technical Operating Parameters and Specifications

Here you define the hydrogen output of your plant. For the central model, enter values for capacity factor and plant design capacity. For the distributed model, also enter information for summer surge, Friday average, and outages.

Financial Input Values

Here you define the financial characteristics of your plant. Several of the fields have an "H2a Default" checkbox adjacent to them. Checking this box automatically fills the cell with the H2A Model default value for that input. The fields *Length of Construction Period*, *Depreciation*

Schedule Length, and Depreciation Type have drop-down menus containing predefined values. Select a value from the drop-down menu for these fields; values not listed in the drop-down menus cannot be entered. The only field calculated by the model within the *Financial Input Values* section is *Total Tax Rate*, shown in blue.

Two very important fields in this section are *Reference Year* and *Basis Year*. Throughout the *Input_Sheet_Template* worksheet, you will enter financial values in basis year dollars, and the model will convert the values to reference year dollars. For example, if you have plant costs in 2005 dollars, you set the basis year to 2005 and enter capital cost values in 2005 dollars throughout the worksheet (in the appropriate orange input cells). Then, if you want cost results in, for example, 2016 dollars, you set the reference year to 2016, and the model automatically converts the 2005-dollar inputs to 2016 dollars based on plant scaling (see page 18) and escalation factors.

Energy Feedstocks, Utilities, and Byproducts

Energy feedstocks, utilities, and byproducts are variable operating costs. The inputs for this section follow the *Financial Input Values* section in the central model, and they follow the *Fixed Operating Costs* section in the distributed model. This section allows you to define energy feedstock, utility, and byproduct costs and credits—up to four of each type. Each element is added by first defining it using the drop-down menus and data entry fields, then clicking the *Add* button.

The first drop-down menu selects the price data table that will be used to calculate feedstock, energy, and byproduct costs and credits. These EIA data are drawn from the model's *Energy Feed & Utility Prices* worksheet (see page 34). Select one of the tables from the drop-down menu:

- AEO_2009_Reference_Case
- AEO_2013_Reference Case
- AEO_2013_High_Price_Case
- AEO_2014_Reference_Case
- AEO_2017_Reference_Case

The U.S. Department of Energy (DOE) has selected the *AEO 2017 Reference Case* as the default for all H2A production technology cases. For more information on the price data, see *Energy Feed & Utility Prices* on page 36. Note, you must use only one price table for each analysis, i.e., you must use the same price table for each energy feedstock, utility, and byproduct you enter.

Use the next two drop-down menus to select use (feedstock, utility, or byproduct) and type. The lower heating value (LHV) is automatically drawn from the *HyARC Physical Property Data* worksheet, *Table A* (see page 37).

Next, accept the shown *Price in Startup Year* or click the *Enter Cost Manually* button—which toggles to the *Use Cost Tables* button—to use the default value or enter your own (see the screen capture on page 12). If you accept the original *Price in Startup Year* or click the *Use Cost Tables* button, the model looks up the price for each year of the analysis in the selected price table and inflates that value using the inflation rate entered in the *Financial Input Values*

section. If you click the *Enter Cost Manually* button and accept the default value or enter your own, the model inflates that price over the analysis period. For *Usage/Production*, enter the amount of energy or material required to produce a kilogram of hydrogen for sale—or the amount of byproduct produced per kilogram of hydrogen produced—in the unit shown. Once these fields are completed, click the *Add* button, which records your entry as shown below.

Remember that a feedstock, utility, or byproduct does not become part of the model's calculations until you click the *Add* button and the entry is recorded. Values present in the input fields but not recorded in this manner do not participate in the calculations. Established H2A production technology cases include recorded feedstock, utility, and byproduct values. Some also include unrecorded values in the input fields (for example, see the screen capture below). You can disregard these unrecorded values or select new values (then click the *Add* button) if you wish to add your own feedstocks, utilities, or byproducts.

To delete entries, click the *Delete* button, which pulls up the *Toolkit* menu. Use the drop-down menu under *Editing* to select the type of entry you want to delete. Then click the *Delete* button. This deletes all entries of the selected type. For example, if you had selected three energy byproducts, choosing *Energy Byproduct* from the drop-down menu and clicking the *Delete* button will delete all three.

When deleting entries, you must use the *Delete* button. Do <u>not</u> delete rows using Excel's delete function. Also, be careful to choose the correct item from the *Delete* menu within the *Toolkit*. It can delete not only the energy feedstocks, utilities, and byproducts selected in this section, but also the other materials and byproducts selected in the *Variable Operating Costs* section (page 14).

The model uses the selected entries to calculate total energy feedstock and utilities costs and byproduct credits in the startup year; these values appear in the three blue cells at the bottom

of the Energy Feedstocks, Utilities, and Byproducts section but are not used in the cash-flow calculations. You can view the values being used in the cash-flow calculations for every year of the analysis in the Cash Flow Analysis worksheet.

If desired, advanced users can change the units applied to each material selected in this section. For example, the units for natural gas feedstock could be changed from Nm3 to scf. This requires changes be made elsewhere in the model. Go to the HyARC Physical Property Data worksheet, Table A, and change the unit in the column H2A Usage Input Unit/ kg H2. In the column H2A LHV (GJ/ H2A usage input unit), enter the

Advanced users only

numerical value of the LHV corresponding to the new input unit; the LHV must be entered as GJ/usage unit for metric values and mmBtu/usage unit for English values. Check that the calculated results are consistent with the new-unit input values.

Advanced users only

Advanced users can take advantage of a shortcut in this section. If you want to perform numerous modeling runs—for example, by modeling the hydrogen costs resulting from an array of feedstock, utility, and byproduct input price and production/usage values—you can save time by typing values directly into certain Excel cells instead of using the model's Add and Delete functions every time. Initially, add your chosen feedstocks, utilities, and byproducts using the Add function. If you want to vary items by typing over values, click the Enter Cost

Manually button for those items and enter your own price; this automatically changes the Lookup Prices field to "no." After completing the rest of the model's sections and recording the resulting hydrogen cost, return to the Energy Feedstocks, Utilities, and Byproducts section. For any items with "no" in the Lookup Prices field, you can manually replace the values for Usage/Production and Price in Startup Year—simply type over the existing values.

Advanced Users Can Manually Enter Certain Feedstock, Utility, and Byproduct Values

Capital Costs

Here you define the capital costs of your plant. For the central model, click the View/Edit button. This takes you to the *Capital Costs* worksheet for data entry (see page 17). When you are done, click the *Input Sheet* button to return to the *Input Sheet Template* worksheet. In that worksheet, clicking the *Link to Detail Sheet* button (which toggles with an *Unlink* button) takes you to the Carbon Sequestration worksheet (see page 21) to calculate detailed capital costs for that function. Once all applicable fields of the Capital Costs section within the Input Sheet Template worksheet are filled with inputs and calculated values, the model

calculates *Total Depreciable Capital Costs*, *Total Non-Depreciable Capital Costs*, and *Total Capital Costs*.

For the distributed model, the process is similar. Under the *Capital Costs - Hydrogen Production Facility* section within the *Input_Sheet_Template* worksheet, click the *Detailed Capital Costs* button. This will send you to the *Capital Costs* worksheet, where you can enter production-related capital cost values. After you return to the *Input_Sheet_Template* worksheet, enter the remaining values in the *Capital Costs - Hydrogen Production Facility* section. Then, under the *H2A Compression, Storage, and Dispensing Capital Cost* section, click the *View Detail* button. This sends you to the *Refueling Station - GH2* worksheet, where you can specify your station's compression, storage, and dispensing capital costs.

Fixed Operating Costs

Here you define your plant's fixed operating costs. Once values are entered or calculated for each field, the model calculates *Total Fixed Operating Costs*.

Variable Operating Costs

Here you define process material costs and other variable operating costs and the value of non-energy byproducts. The parts of the *Variable Operating Costs* section are *Other Materials and Byproducts* and *Other Variable Operating Costs* (the order and wording vary

Make sure values are present for reference year, startup year, & plant capacity

slightly between the central model and the distributed model). To prevent model errors, enter all critical values in the *Technical Operating Parameters and Specifications* (page 10) and *Financial Input Values* (page 10) sections before completing these subsections.

Other Materials and Byproducts

This subsection (see screen capture on next page) works in a fashion similar to the *Energy Feedstocks, Utilities, and Byproducts* function described on page 11. It allows you to define up to three non-energy input materials and three byproducts. Each element is added by first defining it using the drop-down menu and data entry fields, then clicking the *Add* button.

This subsection requires fewer user choices than the *Energy Feedstocks, Utilities, and Byproducts* function does. You do not need to select price tables; prices are automatically drawn from the lists on the *Non-Energy Material Prices* worksheet, or you can enter your own price by clicking the *Enter Cost Manually/Use Cost Tables* button.

You can add materials to the drop-down menu simply by going to the *Non-Energy Material Prices* worksheet and adding information for the new material in the rows underneath the existing information. See *Non-Energy Material Prices Worksheet* on page 35 for an illustration. This is also where you can modify the material prices if desired.

When deleting entries, you must use the *Delete* button. Do <u>not</u> delete the rows using Excel's delete functionality. Also, be careful to choose the correct item from the *Delete* drop-down menu within the *H2A Toolkit*. It can delete not only the other materials and byproducts selected in this subsection, but also the energy feedstocks, utilities, and byproducts selected previously (see page 11).

Advanced users can take advantage of a shortcut in this section by typing values directly into certain Excel cells instead of using the model's *Add* and *Delete* functions every time. This is done in a fashion similar to that in the *Energy Feedstocks, Utilities, and Byproducts* section—see page 13 for instructions.

		a Byproducts (ii	iput_one		inoneer
Other Materials a	nd Byproducts				
Select the Materi				<i>yproduct</i> cheo	ck box
Cooling Water		□ Byproduct			
Feed or utility		Cooling Water			
\$(2007)/ gal	Use H2A Default	\$0.00086	OR	Use Cost Tables	
Usage per kg H2		5	~		
Cost in Startup Y	ear	\$53,762			
Lookup Prices		Yes		Add	Delete
RT_NONE_TOP				-	
	Feed or utility	\$(2007)/ gal	Usage per kg	H2 Cost in Startup Year	Lookup Prices
	Demineralized Water	0.005422998	3.355	\$2,267,513	Yes
	Feed or utility	\$(2007)/ gal	Usage per kg	H2 Cost in Startup Year	Lookup Prices
	Cooling Water	8.6275E-05	1.495	\$16,075	Yes
Total Non Energy I	Itility and Material Costs (\$/year)	\$2,283,588			
Total Non Energy (\$2,263,066			

Other Materials and Byproducts (Input_Sheet_Template Worksheet)

Other Variable Operating Costs

This subsection defines additional variable operating costs. Fill in the appropriate input (orange) cells. The factor you enter in the field *Total Unplanned Replacement Capital Cost Factor* is transferred to the *Replacement Costs* worksheet (see page 16), which calculates replacement costs based on this factor and the value for total depreciable capital costs (see *Capital Costs*, page 13). Clicking the *Enter Specific Costs* button takes you to the *Replacement Costs* worksheet, where you can specify additional replacement costs.

In the central model, the field *CO2 sequestration O&M costs and credits* is filled in automatically if you linked to the *Carbon Sequestration* worksheet in the *Capital Costs* section (see page 13). Once you have entered all the information you want to enter, scroll to the top of the *Input_Sheet_Template* worksheet to find the calculated cost of hydrogen and individual cost components. You can then navigate to the *Results* worksheet, which displays the cost analysis in a more detailed format.

Replacement Costs Worksheet

The *Replacement Costs* worksheet is the source of replacement cost information for the cash flow analysis calculations. It accounts for planned and unplanned replacement costs.

Enter planned replacement costs in basis year dollars-do not inflate.

Enter planned replacement costs (in basis year \$) for each year in the Specified Yearly Replacement Costs column. The values in the Unplanned Replacement Costs column are calculated automatically in the following way:

1) The Total Unplanned Replacement Capital Cost Factor you entered in the Other Variable Operating Costs subsection of the Input Sheet Template worksheet (see page 15) is automatically imported into the *Replacement Costs* worksheet (in the uppermost blue cell; see screen capture below). Clicking the Input Sheet button sends you directly to the relevant cost factor cell in the Input Sheet Template worksheet.

2) This cost factor is multiplied times the *Total Depreciable Capital Costs* value from the Input Sheet Template worksheet (see page 13); the result is automatically entered for each year in the Unplanned Replacement Costs column.

The inflation-adjusted sum of the specified (i.e., planned) and unplanned replacement costs is automatically entered into the Total Yearly Replacement Costs column. When finished, click the *Input Sheet* button to return to the *Input_Sheet_Template* worksheet.

Replacement Costs Worksheet

Capital Costs Worksheet

The *Capital Costs* worksheet accepts inputs for individual capital costs and calculates total direct capital cost. This total direct capital cost is then imported into the *Capital Costs* section of the *Input_Sheet_Template* worksheet (see page 13). This is the direct capital cost of the production equipment not including carbon sequestration equipment, in the central model (see page 21), and not including compression, storage, and dispensing equipment, in the distributed model (see page 23).

In the central model, activate the *Capital Costs* worksheet by clicking the *View/Edit* button next to the *H2A Total Direct Capital Cost* field in the *Capital Costs* section of the *Input_Sheet_Template* worksheet. In the distributed model, activate the *Capital Costs* worksheet by clicking the *Detailed Capital Costs* button next to the *H2A Production Process Total Direct Capital Cost* field in the *Capital Costs* - *Hydrogen Production Facility* section of the *Input_Sheet_Template* worksheet. Enter the names of capital equipment items in the column *Major pieces/systems of equipment*. Enter uninstalled costs for each item in the column *Baseline Uninstalled Costs*. Under the column *Installation Cost Factor*, enter values by which the uninstalled costs of each item will be multiplied to give installed costs. The model automatically calculates total installed direct capital cost in the *Baseline Installed Costs* column. In the central model, the user can also redefine the default baseline hydrogen production value, which is used for plant-scaling purposes. When you are finished inputting values, click the *Input Sheet* button at top to return to the *Input_Sheet_Template* worksheet, where the total capital cost will appear; the screen captures below show the link.

Capital Costs Worksheet (Central Model Shown)

Plant Scaling Worksheet

The H2A Model is designed to determine the levelized cost of hydrogen from a facility with a specific hydrogen production capacity. Similarly, established H2A production technology cases model facilities with specific production capacities. The *Plant Scaling* worksheet makes it easy to analyze facilities with different production capacities. Complete the following steps in the order shown. Note that step 3 is only used for the distributed model.

1) Set Baseline Plant Values (*Input_Sheet_Template*, *Capital Costs, and Plant Scaling* Worksheets)

Baseline plant values are imported into the *Plant Scaling* worksheet from the *Input_Sheet_Template* and *Capital Costs* worksheets, so the first step is to fill out those worksheets completely (see pages 9 and 17). Once you have finished, go to the *Plant Scaling* worksheet. Within the *Plant Scaling* worksheet, the first cell (*Baseline Design Capacity*) and the baseline value cells in the *Capital Investment* section are automatically imported from the *Capital Costs* worksheet in the central model; in the distributed model the *Baseline Design Capacity* is set to 1,500 kg/day.

2) Establish Scaling Parameters (Plant Scaling Worksheet)

Within the *Plant Scaling* worksheet, accept or create scaling parameters. In the *Plant Scaling Factors* section, accept the *Default Scaling Factor Exponent* or enter a new one.

Changing the Scaling Factor Exponent changes how the cost of each item of capital equipment varies in relation to the Scale Ratio (the ratio of new design capacity to baseline design capacity) as follows:

Scaled Cost = Baseline Cost × Scale Ratio^{Scaling Factor Exponent}

For example, a Scaling Factor Exponent of 1.0 means the cost of the equipment increases by the same ratio as the increase in plant capacity. Scaling Factor Exponents are typically 1.0 or less. If values for individual pieces of equipment are entered in the column *Scaling Factor Exponent* within the *Capital Investment* section, those values are used in the scaling calculations. If a value is not present in this column for a given item, the *Default Scaling Factor Exponent* in the *Plant Scaling Factors* section is used.

The Lower Limit for Scaling Capacity and Upper Limit for Scaling Capacity fields define the capacity range within which the scaling you are defining is valid. The model will alert you if you attempt to scale your plant capacity outside the range you specify.

Plant Scaling Worksheet: Plant Scaling Factors and Capital Investment Sections (Central Model Shown)

3) Specify Plant Scaling Methods (*Plant Scaling* Worksheet, distributed model only) After you have added Scaling Factor Exponents to the *Plant Scaling Factors* and *Capital Investment* sections, go down to the next section to accept or define scaling parameters for indirect and non-depreciable capital costs and operating costs.

For each item in the table, choose one of the following scaling methods from the drop-down menus in the *Select Method* column:

- Use Scale Ratio—uses the scale ratio to scale the item cost in relation to plant capacity (i.e., linearly) (Scaled Value = Baseline Value × Scale Ratio)
- Use Scale Factor—uses the scale factor (the ratio of total scaled installed capital cost to total baseline installed capital cost) to scale the item cost in relation to plant capital cost (i.e., scale with capital costs) (Scaled Value = Baseline Value × Scale Factor)
- Use Baseline Value—uses the shown baseline value with no scaling
- *Skip*—skips the value, does not change the cell value or equation
- Use scale ratio with scaling factor exponent—uses the number you select from the dropdown menu (0.1, 0.2, etc.) as the scaling factor exponent, to scale the value in relation to the scale ratio as follows: Scaled Value = Baseline Cost × Scale Ratio^{Scaling Factor Exponent}

The next column (*Scaling Value*) calculates the scaling value for each cost based on the scaling method you selected and the scaled plant capacity (see step 4 below). The *Reference Year Escalation* column lists the escalation factors that the model will apply to each value to convert basis-year dollars to reference-year dollars, and the *Combined Multiplier* column shows the combined effect of the scaling value multiplied times the escalation value. Once you have selected scaling methods for all items, return to the *Input_Sheet_Template* worksheet.

	5	-				
	В	С	D	E	F	G
					Reference Year	Combined
38	Plant Scaling Method	Variable Name	Select Method	Scaling Value	(2016) Escalation	Multiplier
39	Engineering & design (\$)	Engin	Use Scale Factor	1.0000	1.295	
40	Site Preparation (\$)	Site_prep	Use Scale Factor	1.0000	1.295	
41	Process contingency (\$)	Process_cont	Use Scale Factor	1.0000	1.295	
42	Project contingency (\$)	Project_cont	Skip	1.0000	1.295	
43	One-time Licensing Fees (\$)	Fees	Use Scale Factor	1.0000	1.295	
44	Other (Depreciable) capital (\$)	Other_indirect	Use Scale Factor	1.0000	1.295	
45	Up-Front Permitting Costs (\$)	Permitting	Use Scale Factor	1.0000	1.295	
46	Cost of Land (\$/acre)	acre_cost	bse Baseline Volue	1.0000	1 101	<u> </u>
47	Land required (acres)	acres	Baseline Value	1.0	Scaling	
48	Other non-depreciable costs (\$)	Other_non_depr 0.1		1.0	Scanny	
49	Total plant staff (number of FTEs employed by plant)	FTEs 0.2		1.0	method dro	op-
50	Burdened labor cost, including overhead (\$/man-hr)	FTE_cost 0.3		1.0	down moni	
51	Licensing, Permits and Fees (\$/year)	licensing		- 1.0	uown ment	
52	Rent (\$/year)	rent	Use Seale Platfo	1.0		
53	Material costs for maintenance and repairs (\$/year)	material	Skip	1.0000	1.295	
54	Production Maintenance and Repairs (\$/year)	prod_maint	Skip	1.0000	1.295	
55	Other Fees (\$/year)	other_fees	Use Scale Ratio	1.0000	1.295	
- F.C.	Other Fixed ORM Caste (\$40ar)	other fixed	I Ico Soolo Epotor	1.0000	1 205	×

Plant Scaling Worksheet: Plant Scaling for Indirect & Non-Depreciable Capital and Operating Costs

4) Set Scaled Plant Capacity (Input Sheet Template Worksheet)

Within the Input Sheet Template worksheet, enter a value for your new plant's design capacity in the Technical Operating Parameters and Specifications section (see screen capture below). If this value is larger than the baseline design capacity (as defined in the *Capital Costs* worksheet), the scale factor and ratio will be greater than 1.00. If it is smaller, the scale factor and ratio will be less than 1.00. Once you have entered this value, the cost values in the Input Sheet Template and Plant Scaling worksheets are scaled automatically according to the parameters you set in the *Plant Scaling* worksheet (step 2 above). The model will calculate the new cost of hydrogen automatically after these values have been entered.

Input_Sheet_Template Worksheet (Central Model Shown)

Turning Off Plant Scaling

To turn off plant scaling, reset the plant design capacity in the Technical Operating Parameters and Specifications section of the Input Sheet Template worksheet (see screen capture above) to be equal to the Design Plant Hydrogen Production value within the Capital Costs worksheet (for the central model) or 1,500 kg/day (for the distributed model). Your plant characteristics will revert to the previously established baseline values.

Carbon Sequestration Worksheet (Central Model)

This worksheet is the source of values for carbon sequestration capital, operating, and electrical costs as well as carbon sequestration efficiency (proportion of carbon emissions captured from hydrogen production feedstocks) and energy use. It calculates costs for CO_2 compression, transportation to the sequestration site, and injection. Costs for CO_2 capture are assumed to be included in the production facility's capital and operating costs and are not included in this worksheet. Further, the worksheet only covers CO_2 emissions from the hydrogen production feedstocks, not CO_2 emissions from fuels used as utilities (e.g., natural gas used in a heater).

Before completing the *Carbon Sequestration* worksheet, specify all feedstocks and utilities in the *Input_Sheet_Template* worksheet (see *Energy Feedstocks, Utilities, and Byproducts,* page 11). After you have specified the feedstocks and utilities, activate the *Carbon Sequestration* worksheet by clicking the *Link to Detail Sheet* button next to the *H2A Carbon Sequestration Total Direct Capital Cost* field in the *Capital Costs* section of the *Input_Sheet_Template* worksheet (see screen capture below).

Clicking the *Link to Detail Sheet* button sends you to the *Carbon Sequestration* worksheet. At the top of the worksheet are notes, three self-explanatory buttons (see page 9 for a description of the *Use Default Values* functionality), and links to tables within the worksheet. You will input values only into the *Carbon Sequestration Input Values* table; complete or accept the default values for the orange-shaded fields. The other tables display the calculations and results based on your inputs. When you are finished inputting values, click the *Input Sheet* button at top to return to the *Input_Sheet_Template* worksheet.

The cost results (seen in the *Summary of Output Values* table) are the source of carbon transmission and storage direct capital costs, operation and maintenance costs and credits within the *Input_Sheet_Template* worksheet, and electricity use, which is used in the cash flow analysis—see the schematic below. The calculations also feed the carbon sequestration cost, energy use, and emissions results within the *Results* worksheet.

See Appendix 1 (page 44) for more information about the carbon sequestration inputs, outputs, and calculations used in this worksheet plus references for further reading.

Schematic of Cost Outputs from Carbon Sequestration Worksheet to Other H2A Worksheets Input_Sheet_Template Worksheet

Refueling Station – GH2 Worksheet (Distributed Model)

This extensive worksheet calculates the optimal cost for compressing, storing, and dispensing hydrogen at a refueling station with a convenience store. Costs are calculated per kilogram of hydrogen dispensed. The average capacity can be varied up to 6,000 kg/day. Because the capital, fixed, and operating costs vary along with the varying capacity, none of the variables included in this worksheet appear in the *Plant Scaling* worksheet.

Go to the *Refueling Station* – *GH2* worksheet by clicking the *View Detail* button next to the *H2A Compression, Storage, and Dispensing Capital Cost* field in the *Input_Sheet_Template* worksheet (see screen capture below).

At the top of the *Refueling Station* – *GH2* worksheet are cost, performance, energy, and emissions results for the refueling station. These are based on the default values/user inputs (orange fields) and calculations (blue fields) contained in the subsequent tables on the worksheet. When you are finished accepting default values and inputting custom values as desired, return to the *Input_Sheet_Template* worksheet to finish specifying your facility.

When you calculate your facility's costs, the *Refueling Station – GH2* cost results are transferred to the *Results* worksheet—see the schematic below. The *Refueling Station – GH2* worksheet also provides the values needed to calculate energy use and emissions due to compression, storage, and dispensing.

See Appendix 2 (page 51) for more information about the version 3 refueling station inputs, outputs, and calculations plus references for further reading.

Storage and Refueling Worksheet (Distributed Model)

The *Storage and Refueling* worksheet graphically profiles the operation of the modeled hydrogen dispensing and storage system. The profile is for a week in the summer with a worst-case-scenario reformer outage. It shows how stored hydrogen is used to compensate for the reformer outage. The data are drawn from the *Refueling Station – GH2* worksheet. No user input is required.

Storage and Refueling Worksheet

H2A Toolkit

The *H2A Toolkit* is not an Excel worksheet—it is a pop-up window accessed by the *Delete* buttons within the *Input_Sheet_Template* worksheet. The *Toolkit* performs a number of functions:

- Printing and exporting inputs and results
- Editing input parameters

Printing and Exporting Inputs and Results

Clicking the *Print Input Report* and *Print Result Report* buttons automatically prints information from the *Input_Sheet_Template* and *Results* worksheets, respectively. Automatic printing does not work with all printers. If it does not work for you, simply go to the worksheet you would like to print, click *File* at the top of your Excel window, and then click *Print*.

You can also export the inputs and results from your analysis to an Excel file. Click the *Export Data* button. Click Yes in the pop-up window that asks if you want to save your file. After you save the file, it will close automatically. The resulting file contains input and result values in an easily importable format, which you can bring into other analysis models.

Editing: Delete Feed, Utility, and Byproduct Inputs

This function deletes items that have been added to the *Energy Feedstocks, Utilities, and Byproducts* and *Other Materials and Byproducts* sections within the *Input_Sheet_Template* worksheet (see pages 11 and 14). Use the drop-down menu under *Editing* to select the type of item you want to delete. Then click the *Delete* button. This deletes all items of the selected type. For example, if you had selected three energy byproducts, choosing *Energy Byproduct* from the drop-down menu and clicking the *Delete* button will delete all three.

When deleting items, it is critical to use the *Toolkit's Delete* button. Do <u>not</u> delete the corresponding rows within the *Input_Sheet_Template* worksheet using Excel's delete function. Also, be careful to choose the correct item from the *Delete* drop-down menu. <u>All</u> items of the selected type are deleted within the *Energy Feedstocks, Utilities, and Byproducts* or *Other Materials and Byproducts*

sections. Choosing "All" at the bottom of the drop-down menu deletes all energy and nonenergy feeds, utilities, and byproducts.

H2A Toolkit: Delete Feed, Utility, and Byproduct Inputs

H2A Toolkit		×
- Import and Export Data Print Input Report	Print Result Report	Export Data
Editing Delete Feed, Utility, and Byproduct Inputs — Select the type of input to delete then click		
"delete"	Select the item to delete from the drop-down menu then click the <i>Delete</i> button	

Results Worksheet

The *Results* worksheet tabulates the results of your H2A Model analysis. No user input is required within this worksheet. The hydrogen cost results are in the *Specific Item Cost Calculation* table at the top (see screen captures below). In the central model, the costs shown in the *Approximate Carbon Sequestration Costs* table are included in the total cost shown in the *Specific Item Cost Calculation* table. In the distributed model, in addition to total delivered hydrogen cost, the contributions from hydrogen production and from compression, storage, and dispensing are detailed.

4	В	С	D	E	r'			
12 H2	2a Analysis R	esults	Rynroduct Sales		Costs att	tributed t	to [
13	La Milalyolo IX	counto			00313 41	induced		
14 CC	DST RESULTS		Initial Equity Dep	reciable Capital	carbon s	ation		
15 Lan	g Factor	2.25	Taxes Other Variable Or	oorating Coata	Other Days	Vatorial Coat		
10 17 Sno	cific Itom Cost Calculat	ion		berating Costs	Annrovimate Carbo	n Securetration (`oete*	
					Cost Component (Cost Contribution	Cost	
					((\$/ kg H2)	Contribution (\$/ tonne CO2	
18	Cost Component	Cost Contribution (\$/kg)	Percentage of H2 Cost		Capital Costs	\$0.17	Sequestered)	
20	Decommissioning Costs	\$0.94	0.0%		O&M Cost	\$0.03	\$5.20	
21	Fixed O&M	\$0.09	4.4%		Energy Cost	\$0.05	\$5.60	
22	Feedstock Costs	\$1.23	61.1%		Total	\$0.25	\$30.90	
					*Carbon sequestration cos	sts presented in this tal	ble do not include	
23	Other Raw Material Costs	\$0.00	0.0%		carbon contura canital and	Longrating costs		
24	Byproduct Credits	\$0.00	0.0%		nan cost /	(product	ion +	
26	Other Variable Costs (including		7 594	Пуши	yen cost (product		
26 Tota	dunnes)	\$2.02	1.5%	_ carbo	n convet	ration)		
27					n sequest	rationj	-	
28 FN	IFRGY							
20								
29 30 Enc	erav Data							
29 30 Ene	ergy Data						Unit System	
29 30 Ene	ergy Data	Conital Costs / Diget Scal	Eneray Input (kWh/ka	Paculto Torn			Unit System	Real levelized
29 30 Ene	Replacement Costs	Capital Costs Plant Scal	Energy Input (kWh/kg	n Results Torna	ado C		Unit System	Real levelized
29 30 Ene	Replacement Costs	Capital Costs / Plant Scal	Energy Input (kWh/kg ing Carbon Sequestratio D Bynroduct Sales	n Results Torna	ado C		Unit System	Real levelized
29 30 <i>Ene</i> 2 H2	ergy Data Replacement Costs B 2a Analysis Re	Capital Costs Plant Scal C Plant Scal	Energy Input (kWh/kg ing Carbon Sequestratio D Ryproduct Sales	Results Torna	grayed out	t indicat	Unit System	Real levelized
29 30 <i>Ene</i> 4 4 4 2 H2 3	Replacement Costs B 2a Analysis Re	Capital Costs Plant Scal C PSUITS	Energy Input (kWh/kg Carbon Sequestratio D Rupproduct Salee Feedstock Cost	Results Torna	grayed ou	t indicat	Unit System	Real levelized
29 80 Ene 4 • • • 2 H2 3 4 CO	ergy Data Replacement Costs B 2a Analysis Re DIST RESULTS	Capital Costs / Plant Scal C Plant Scal	Energy Input (kWh/kg ing Carbon Sequestratio Burger of the sequestration Freedstock Cost Initial Equity Depi	Results Torna Box reciab Sequ	grayed ou	t indicat	Unit System	Real levelized
29 30 <i>Ene</i> 4 1) 2 H2 3 4 CO 5 Lan <u>c</u>	ergy Data Replacement Costs B 2a Analysis Re ST RESULTS g Factor	Capital Costs / Plant Scal C esults 2.73	Enerov Inout (kWh/ko ing Carbon Sequestrato D Runnoduct Selee Feedstock Cost Initial Equity Depu Taxes	Results Torna Box reciab	grayed out	t indicat	Unit System ing car ided	Beal levelized
29 30 <i>Ene</i> 2 H2 3 4 CO 5 <u>Lanc</u> 6	ergy Data Replacement Costs B 2a Analysis Re ST RESULTS g Factor	Capital Costs / Plant Scal C esults 2.73	Enerov Input (kWh/ko ing Carbon Sequestratio D Burproduct Selee Feedstock Cost Initial Equity Depr Taxes Other Variable Op	n Results Torna Box reciab Sequ berating Costs	grayed out iestration i	t indicati not inclu	Unit System	Beal levelized
29 30 Ene 2 H2 3 4 CO 5 Lanc 6 7 Spe	ergy Data B Ca Analysis Re Ca TRESULTS G Factor ciffic Item Cost Calculati	Capital Costs Plant Scal C PSUITS 2.73	Energy Input (kWh/kg ing Carbon Sequestratio D Burnordiuct Salae Feedstock Cost Initial Equity Depr Taxes Other Variable Op	BOX Results Torna BOX SEQL berating Costs	grayed out gestration i Other Pour M Carbon Sequestratio	t indication tinclu	Unit System ing car ided in this case	bon
29 30 Ene 12 H2 13 14 CO 15 Lang 16 17 Spe	ergy Data B B Ca Analysis R D ST RESULTS G Factor cific Item Cost Calculati	Capital Costs / Plant Scal C Plant Scal 2.73 on	Eneray Input (kWh/ka ing Carbon Sequestratio D Burnadust Sales Feedstock Cost Initial Equity Depu Taxes Other Variable Op	Results Torna BOX SEQL berating Costs	grayed out sestration i Other Paul M Carbon Sequestratio Cost Component	t indicati not inclu on is not included cost Contribution (Unit System ing car ided	Real levelized
29 30 Ene 14 1 1 12 H2 13 14 CO 15 Lang 16 17 Spe	ergy Data Replacement Costs B 2a Analysis Re ST RESULTS g Factor cific Item Cost Calculati	Capital Costs / Plant Scal C esults 2.73	Enerov Input (kWh/ka ag Carbon Sequestrato D Burneduct Salae Feedstock Cost Initial Equity Depu Taxes Other Variable Op	Results Torna Box reciab Sequ berating Costs	grayed out sestration i Carbon Sequestratio Cost Component C (S	t indication not incluint for is not included oset Contribution (\$/ kg H2)	Unit System ing car ided	Bon
29 30 Ene 2 H2 3 4 CO 5 Lanc 6 7 Spe	ergy Data Replacement Costs B 2a Analysis Re ST RESULTS G Factor cific Item Cost Calculati	Capital Costs / Plant Scal C esults 2.73 on	Energy Input (kWh/kg ing Carbon Sequestrato D Burnowfurd Salae Feedstock Cost Initial Equity Depu Taxes Other Variable Op	Results Torna BOX reciab SEQL berating Costs	grayed out sestration Carbon Sequestratic Cost Component C (f	t indicat not inclu on is not included Cost Contribution (\$/ kg H2)	Unit System ing car ided in this case Cost Contribution \$1 tonne CO2	Real levelized
29 30 Ene 2 H2 2 H2 3 4 CO 5 Lanc 6 7 Spe 8	ergy Data Replacement Costs B Ca Analysis Revealed PST RESULTS g Factor cific Item Cost Calculati Cost Component	Capital Costs / Plant Scal C 2.73 00 Cost Contribution (\$/kg)	Energy Input (kWh/kg ing Carbon Sequestratio Dependent Salas Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost	Results Torna Box Sequereciab Sequerating Costs	grayed out gestration i Other Paul Carbon Sequestratic Cost Component C (s	t indicat not inclu tate of Cost on is not included Cost Contribution (C Si kg H2)	Unit System ing car ided in this case Cost Contribution St fonne CO2 Sequestered)	Real levelized
29 30 Ene 2 H2 3 H2 4 CO 5 Lanc 6 Lanc 8 H2 9 H2	ergy Data Replacement Costs B Ca Analysis Re ST RESULTS G Factor Cost Component Capital Costs Decomposition Cost Capital Costs Cost Component Capital Costs Capital	Capital Costs Plant Scal C esults 2.73 on Cost Contribution (5/kg) 50.33 50.00	Energy Input (kWh/kg ing Carbon Sequestratio D Environduct Sales Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19,5% 0 ner	Results Torna BOX SEQL berating Costs	grayed out sestration i Other Paul M Carbon Sequestratic Cost Component C (\$ Capital Costs OBM Cret	t indication tincluded	Unit System ing car ided in this case Cost Cost Cost Dontribution St tonne CO2 Sequestered)	Real levelized
29 30 Ene 14 • • 12 H2 13 14 CO 15 Lanc 16 CO 17 Spect 18 19 20 21	ergy Data Replacement Costs B Ca Analysis Re ST RESULTS G Factor Cost Component Capital Costs Decommissioning Costs Decommissi Decommissioning Costs Dec	Capital Costs Plant Scal C PSUITS 2.73 00 Cost Contribution (\$/kg) 50.33 50.00 50.61	Energy Input (kWh/ka ing Carbon Sequestrato D Burnevituet Salae Feedstock Cost Initial Equity Depu Taxes Other Variable Op Percentage of H2 Cost 19.5% 0.0% 3.7%	Results Torna BOX reciab Sequ berating Costs	ado () (grayed out Jestration I Other Paul M Carbon Sequestratic Cost Component C (\$ Capital Costs O&M Cost Energy Cost	t indicat not inclu on is not included Cost Contribution (S/ kg H2) (Unit System ing car ided	Real levelized
29 30 Ene 2 H2 3 H2 4 CO 5 Lanc 6 7 Spe 18 9 10 11 12 12	ergy Data B Ca Analysis Re Ca Analysis Re Ca Analysis Re Cast RESULTS g Factor Cost Component Capital Costs Decommissioning Costs Fixed O&M Feed Sock Costs	Capital Costs Plant Scal C Plant Scal C 2.73 on Cost Contribution (\$/kg) 50.33 50.00 50.06 51.23	Energy Input (kWh/ka ing Carbon Sequestratio Department Selection Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19.5% 0.0% 3.7% 72.4%	Results Torna Box Sequ berating Costs	grayed out sestration Carbon Sequestratic Cost Component C (s Capital Costs O&M Cost Energy Cost Total	t indication included	Unit System ing car ided in this case Cost Contribution \$/ tonne CO2 Sequestered) \$0 001	Real levelized
29 30 Ene 12 H2 13 14 CO 15 Lang 16 17 Sper 18 19 20 21 22 21	ergy Data Replacement Costs B Ca Analysis Re ST RESULTS G Factor Cific Item Cost Calculati Cost Component Capital Costs Decommissioning Costs Fixed 0&M Feedstock Costs	Capital Costs Plant Scal C PSUITS 2.73 00 Cost Contribution (\$/kg) 50.33 50.00 \$0.06 \$1.23	Energy Input (kWh/kg ing Carbon Sequestratio Burnordurt Sales Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19,5% 0,0% 3,7% 72,4%	Results Torna Box Sequerating Costs	ado C 4 grayed out Jestration I Other Park M Carbon Sequestratio Cost Component C (1) Capital Costs O&M Cost Energy Cost Total "Carbon sequestration cost	t indication not included cost Contribution (\$/ kg H2) (\$0.00 ts presented in this tab	Unit System ing car ided in this case Cost Contribution St tonne CO2 Sequestered) \$0.00 sle do not include	Real levelized
29 30 Ene 2 H2 2 H2 3 4 CO 5 Lang 6 Lang 6 Spect 8 9 9 9 0	ergy Data Replacement Costs B Ca Analysis Re ST RESULTS g Factor cific Item Cost Calculati Cost Component Capital Costs Decommissioning Costs Fixed 0&M Feedstock Costs Other Raw Material Costs	Capital Costs Plant Scal C Plant Scal C Plant Scal C 2.73 on Cost Contribution (\$/kg) \$0.33 \$0.00 \$0.06 \$1.23 \$0.00	Energy Input (kWh/kg ing Carbon Sequestratio D Burneduct Salee Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19.5% 0.0% 3.7% 72.4% 0.0%	Results Torna Box Seque berating Costs	ado C Capital Costs Carbon Sequestration I Carbon Sequestratic Cost Component C Capital Costs O&M Cost Energy Cost Total 'Carbon sequestration cost	t indication not included on is not included Sost Contribution (\$/ kg H2) (spresented in this tab sts.	Unit System ing car ided in this case Cost Cost Cost Cost South Subsection Sequestered) South S	bon
29 30 Ene 12 H2 13 H2 14 CO 15 Lang 16 Ene 18 Ene 19 Ene 10 E	ergy Data B B Ca Analysis Re PST RESULTS g Factor cific Item Cost Calculati Cost Component Capital Costs Decommissioning Costs Fixed O&M Feedstock Costs Other Raw Material Costs Byproduct Credits	Capital Costs Plant Scal C 2.73 On Cost Contribution (\$/kg) 50.33 50.00 50.06 51.25 50.00 50.00 50.00	Energy Input (kWh/ka ing Carbon Sequestratio D Runnordiuct Salae Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19.5% 0.0% 3.7% 72.4% 0.0%	Box Box Sequ berating Costs	grayed out estration Carbon Sequestratio Cost Component C (st Capital Costs O&M Cost Energy Cost Total 'Carbon sequestration cost	t indicat not included cost Contribution (\$/ kg H2) (ts presented in this tab	Unit System ing car inded in this case Cost Contribution \$/ tonne CO2 Sequestered) \$0.00 \$0.00 \$0.00 \$0.00	Real levelized
29 30 Ene 2 H2 2 H2 3 3 4 4 CO 5 Lang 6 Lang 7 Spect 8 9 9 9 11 12 12 12 13 14 14 14 14 14 14 14 14 14 14	ergy Data Provide Costs Provid	Capital Costs Plant Scal C 2:SUITS 2.73 on Cost Contribution (\$/kg) 50.33 50.00 50.06 \$1.23 50.00 50.00 50.00	Energy Input (kWh/ka ing Carbon Sequestratio D Runnet Carbon Sequestratio P Runnet Carbon Taxes Other Variable Op Percentage of H2 Cost 19.5% 0.0% 3.7% 72.4%	Results Torna Box Seque herating Costs	ado C 4 grayed out sestration i Carbon Sequestratio Cost Component C (s Capital Costs O&M Cost Energy Cost Total "Carbon sequestration cost gen cost	t indication of the second sec	Unit System ing car ided in this case Cost Contribution \$tonne CO2 Sequestered) \$tonne CO2 Sequestered) \$tonne CO2 Sequestered)	Real levelized
29 30 Ener 12 H2 13 H2 14 CO 15 Lang 16 Lang 16 Lang 17 Spectron 19 - 10 - 11 - 12 - 12 H2 13 - 14 CO 15 Lang 16 - 16 - 17 Spectron 17 Spectr	ergy Data Replacement Costs B Ca Analysis Re ST RESULTS G Factor Cost Component Capital Costs Decommissioning Costs Fixed 08M Feedstock Costs Other Raw Material Costs Byproduct Credits ther Variable Costs (including utilities)	Capital Costs Plant Scal C esults 2.73 on Cost Contribution (5/kg) 50.33 50.00 50.06 51.23 50.00 50.00	Energy Input (kWh/kg ing Carbon Sequestratio D Runnduct Sales Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19,5% 0,0% 3,7% 72,4% 0,0% 0,0% 4,4%	Results Torna Box Seque herating Costs	ado C A A A A A A A A A A A A A A A A A A	t indication not included on is not included cost Contribution (\$/ kg H2) (\$0.00 ts presented in this tab	Unit System ing car ided in this case Cost Cost Cost Cost Cost Cost Sontribution \$/ tonne CO2 Sequestered) \$0.00 slo do not include	Real levelized
29 29 20 20 20 20 20 20 20 20 20 20	ergy Data B B Ca Analysis Re Ca Analysis Re PST RESULTS g Factor Ciffic Item Cost Calculati Cost Component Capital Costs Decommissioning Costs Fixed 0&M Feedstock Costs Other Raw Material Costs Byproduct Credits Byproduct Credits Byproduct Credits Uther Raw Material Costs	Capital Costs Plant Scal C 2.73 On Cost Contribution (\$/kg) 50.33 50.00 50.06 51.23 50.00 50.00 51.23 50.00 50.00 51.23	Energy Input (kWh/ka ing Carbon Sequestratio D Burnwrduct Salae Feedstock Cost Initial Equity Depu Taxes Other Variable Op Percentage of H2 Cost 19,5% 0,0% 3,7% 72,4% 0,0% 0,0%	Results Torna Box Sequerating Costs	ado C Carbon Sequestration I Carbon Sequestratic Cost Component C Capital Costs O&M Cost Energy Cost Total "Carbon sequestration cost O&M Cost Energy Cost Total "Carbon sequestration cost gen cost uction only	t indicat not inclue on is not included Cost Contribution (\$/ kg H2) (\$0.00 ts presented in this tab	Unit System ing car ided in this case Cost Cost Contribution \$/ tonne CO2 Sequestered) \$0.00 \$0.00 \$0.00 \$0.00 \$0.00	Real levelized
29 30 Ene 4 4 4 12 H2 13 14 CO 15 Lang 17 Spec 18 19 19 19 20 22 23 24 23 24 25 26 10 10 10 10 10 10 10 10 10 10	ergy Data Replacement Costs B Ca Analysis Re Ca Analysis Re Cost RESULTS g Factor Cost Component Capital Costs Fixed 0&M Feedstock Costs Other Raw Material Costs Bypoduct Credits ther Variable Costs (including utilities)	Capital Costs Plant Scal C 2.73 000 Cost Contribution (\$/kg) 50.33 50.00 50.00 51.23 50.00 50.00 51.23 50.00 51.70	Energy Input (kWh/ka ing Carbon Sequestratio D Rummituret Salae Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19.5% 0.0% 3.7% 72.4% 0.0% 0.0%	Results Torna Box Sequerating Costs	grayed out sestration Carbon Sequestratio Cost Component C (s Capital Costs O&M Cost Energy Cost Total 'Carbon sequestration cost O&M Cost Energy Cost Total 'Carbon sequestration cost gen cost action only	t indication of the second sec	Unit System ing car ided in this case Cost Contribution \$/ tonne CO2 Sequestered) \$0.00 \$0.00 le do not include	Real levelized
229 30 Ene 41 4 9 12 H2 13 H2 14 CO 15 Lang 15 Lang 16 Lang 17 Spec 19 9 10 12 12 H2 13 10 15 Lang 16 Lang 17 Spec 17 Spe	ergy Data Replacement Costs B Ca Analysis Re ST RESULTS G Factor Cific Item Cost Calculati Cost Component Capital Costs Decommissioning Costs Fixed 0&M Feedstock Costs Other Raw Material Costs Byproduct Credits ther Variable Costs (including ther Variable Costs (including) ther Variable Costs (including) there (including) ther	Capital Costs Plant Scal C esults 2.73 on Cost Contribution (\$/kg) 50.33 50.00 50.06 51.23 50.00 50.00 51.70	Energy Input (kWh/ka ing Carbon Sequestratio D Rummdurt Sales Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19,5% 0,0% 3,7% 72,4% 0,0%	Results Torna Box Sequence berating Costs	ado C A A A A A A A A A A A A A A A A A A	t indication of the second sec	Unit System ing car ided in this case Cost Cost Cost Cost Sequestered) \$0.00 so 00 le do not include	bon
29 30 Ene 41 ← ↓ ↓ 42 H2 33 44 CO 5 Lanc 45 CO 5 Co 40 CO	ergy Data B B Ca Analysis Re PST RESULTS g Factor cific Item Cost Calculati Cost Component Capital Costs Decommissioning Costs Fixed 0&M Feedstock Costs Other Raw Material Costs Byproduct Credits ther Variable Costs (including utilities)	Capital Costs Plant Scal C 2.73 On Cost Contribution (\$/kg) 50.33 50.00 51.23 50.00 51.23 51.70	Energy Input (kWh/ka ing Carbon Sequestratio D Runnorfurct Salae Feedstock Cost Initial Equity Depu Taxes Other Variable Op Percentage of H2 Cost 19,5% 0,0% 3,7% 72,4% 0,0% 0,0%	Results Torna Box Seque berating Costs	ado C Carbon Sequestration	t indicat not inclue on is not included Cost Contribution (\$/ kg H2) (\$0.00 ts presented in this tab sts.	Unit System ing car ided	Real levelized
299 201 201 202 202 202 202 202 202	ergy Data Provide Costs Part Resolution Part Resolution Part Resolution Part Resolution Part Resolution Part Cost Concount Capital Costs Decommissioning Costs Fixed 0&M Feedstock Costs Other Raw Material Costs Byproduc Credits Byproduc Credits ther Variable Costs (including utilities) Part Variable Costs (including utilities) Part Part Part Part Part Part Part Part	Capital Costs Plant Scal C Pant Scal C Plant Scal C Plant Scal C S S S S S S S S S S S S S S S S S S	Energy Input (kWh/ka ing Carbon Sequestratio Burnerdiret Salae Feedstock Cost Initial Equity Depr Taxes Other Variable Op Percentage of H2 Cost 19.5% 0.0% 3.7% 72.4% 0.0% 0.0%	Results Torna Box Sequerating Costs	grayed out estration Carbon Sequestratic Cost Component C (st Capital Costs O&M Cost Energy Cost Total "Carbon sequestration cost gen cost uction only	t indication of the second sec	Unit System ing car ided in this case Cost Contribution \$/ tonne CO2 Sequestered) \$0.00 le do not include	Real levelized

Central Model Cost Results Including (Top) and Not Including (Bottom) Carbon Sequestration

		Distrib	uted Model Cost Res	ults	
	В	С	D	E	F
15 16			Initial Equity Deprecia	ble Capital	Total cost
17 18 19	COST RESULTS		Feedstock Cost Fixed Operating Cost Other Variable Operat	ing Costs	Other Day Meterial Cost Other NV Depresiable C
20	Specific Item Cost Calculat	ion	Total Cost of Delivered Hydrogen		\$4.29
21	Cost Component	Hydrogen Production Cost Contribution (\$/kg)	Compression, Storage, and Dispensing Cost Contribution (\$/kg)*		Percentage of H2 Cost
22	Capital Costs	\$0.60	\$ 1.15		40.8%
23	Decommissioning Costs	\$0.01	\$ -		0.1%
24	Fixed O&M	\$0.19	\$ 0.44		14.6%
25	Feedstock Costs	\$1.14	\$ -		26.6%
26	Other Raw Material Costs	\$0.00	\$ -		0.0%
27	Byproduct Credits	\$0.00	\$ -		0.0%
28	Other Variable Costs (including	\$0.12	\$ 0.64		Compression, storage,
29 30	* Res Production	cost detail Refueling St	ation calculation sheet is used.		and dispensing cost
31	Plant Scaing storage and re	efueling Refueling Station - GH2	Results Tornado Charts Productio	n Cash Flow Analys	is Refueling Cash Flo 4

The remaining tables show energy and emissions results. In the central model, the *Energy Data* table summarizes the energy inputs in the form of feedstocks, utilities, and carbon sequestration. It also summarizes the energy outputs in the form of hydrogen and byproducts. The *Production Process Energy Efficiency* table shows a percentage efficiency calculated by dividing energy outputs by energy inputs. Unless otherwise specified, efficiencies are reported on an LHV basis.

The *Upstream Energy Usage* table shows total, fossil fuel, and petroleum energy consumed by energy inputs during their upstream processing (e.g., natural gas extraction or coal-fired electricity generation). These estimates of upstream energy use are calculated based on the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) Model. The GREET Model is continually being updated. For the most accurate upstream energy results, download and use the most recent GREET version at www.transportation.anl.gov/modeling_simulation/GREET.

The *Emissions Summary* table summarizes upstream and process greenhouse gas emissions. The next two tables—*Production Process GHG Emissions Summary* and *Production Process GHG Emissions*—detail the process greenhouse gas emissions. Note that the default is to have all process emissions counted as CO_2 , as defined in the *HyARC Physical Property Data worksheet*, *Table A*. If you want to add information about CH₄ and N₂O emissions to the energy feeds, enter values in the last two columns of *Table A* (see screen capture below).

			0	D		IZ.	.		81	
	TABLE A - Energy Feedstock and	d Utility Properties Table	L	U	E	ĸ	L	M	N	-
60				Done						
70	Feedstock Type	Source	Source Year (for original price data)	H2a Reference Year	Units for Feedstock Price Table	CO2 Emissions Factor (kg CO2 produced/GJ feed)	Unit System	CH4 Emissions Factor (kg CH4 produced/GJ or mmBtu feed)	N2O Emissions Factor (kg N2O produced/GJ or mmBtu feed)	
71	Commercial Natural Gas	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data	see Energy Feed Tab	2007	Enter C	H ₄ and	Metric			
72	Industrial Natural Gas	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data	see Energy Feed Tab	2007	N₂O val hese c	lues in olumns	Hetric			
73	Residential Natural Gas	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data	see Energy Feed Tab	2007			Metric			
74	Electric Utility Natural Gas	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data	see Energy Feed Tab	2007	\$(2007)/GJLHV	56.32	Metric			
75	Bio Methane		see Energy Feed Tab	2007	\$(2007)/GJLHV	56.32	Metric			
76	Commercial Electricity	Energy Information Administration Annual Energy Dutlook, See AED Data sheet for original data	see Energy Feed Tab	2007	\$(2007)/GJ	0.00	Metric			
77	Industrial Electricity	Energy Information Administration Annual Energy Outlook, See AEO Data sheet for original data	see Energy Feed Tab	2007	\$(2007)/GJ	0.00	Metric			
78	Residential Electricity	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data	see Energy Feed Tab	2007	\$(2007)/GJ	0.00	Metric			
79	Electric Utility Steam Coal	Energy Information Administration Annual Energy Outlook. See AEO Data sheet for original data	see Energy Feed Tab	2007	\$(2007)/GJLHV	102.75	Metric			
	Metallurgical Coal	Energy Information Administration Annual Energy Outlook. See AEO	see Energy Feed Tab	2007	\$(2007)/GJLHV	102.75	Metric			-
H.	AEO Data HyARC P	hysical Property Data 🚄	Debt Financing	Calculations	🖌 Depreciatio	on 🖌 Constants ar	nd Conversions	Lists / 📜 📘	4	

HyARC Physical Property Data Worksheet, Table A: Entering CH_4 and N_2O Values

Note: some table columns have been hidden for illustrative purposes.

The *Upstream GHG Emissions* table shows greenhouse gas emissions (CO₂, CH₄, N₂O, and total) produced by energy inputs during their upstream processing. These estimates of upstream emissions are calculated based on the GREET Model.

		/			
	В	С	D	E	F
108	Upstream GHG Emissions	(kg/kg H2)			
109	Feedstock	CO2	CH4	N2O	Total GHG (CO2 eq)
110	Industrial Natural Gas	0.785	2.14E-02	1.24E-05	1.324
111					
112					
113					
114	Utility				
15	Industrial Electricity	0.428	5.61E-04	5.84E-06	0.444
16					
117					
18					
119	Carbon Sequestration				
20	Industrial Electricity	0.608	7.96E-04	8.30E-06	0.630
121	TOTAL	1.820	2.28E-02	2.65E-05	2.398

Results Worksheet, Upstream GHG Emissions Table (Central Model Shown)

In the distributed model, under the heading *Summary Energy Results*, total and onsite energy use are calculated for the production and refueling station elements of the facility. In addition, the facility's energy efficiency (energy output divided by energy input) is calculated. Unless otherwise specified, efficiencies are reported on an LHV basis.

Under the heading *Summary Emissions Results*, upstream and onsite greenhouse gas emissions results are tabulated. Next, a diagram summarizes system energy inputs and energy and emissions outputs. Estimates of upstream energy use and emissions are calculated based on the GREET Model.

Cash Flow Analysis Worksheet

The *Cash Flow Analysis* worksheet shows the inputs, outputs, and calculations of the discounted cash flow analysis used to generate the hydrogen cost results (see page 27). No user input is required within this worksheet.

The worksheet contains the following information, which is linked from a table of contents at the top:

- Discounted Cash Flow (DCF) Calculations
- Yearly Cash Flow Calculations
- Specific Item Cost Calculation
- Feedstock, Utility, and Byproduct Cost Information.

Note the distributed model contains two separate worksheets—*Production Cash Flow Analysis* and *Refueling Cash Flow Analysis*—which address cash flows for those two components separately.

	A	В	С	D	E	
2	TABLE OF CONTENTS					
3	DCF Calculations					
4	Yearly Cash Flow Calculations					
5	Specific Item Cost Calculation					
6	Feedstock, Utility, and Byproduct	Cost Information				
7						
8						
9						
10						
11						
12						
13						
14			1			1
15	DCE CALCULATION INPU	TS				
				Hydrogen Cost		
				(Year 2007 Real		
16	Process			\$/kg)	\$1.940	
				Hydrogen Cost (Start-		
	Actual Hydrogen Produced			up Year Nominal	40.050	
17	(Kg/yr)	124,628,630		\$/kg)	\$2.052	
18	Produced (MMBtu(LHV)/vr)	14 200 760		After Tax Peal IPP	10.0%	
10	Actual Hydrogon Energy	14,200,709		Aller Tax Real IRR	10.0%	
19	Produced (M.I(I HV)/vr)	14 981 811 731		Pre Tax Real IRR	15.4%	
20	Design Capacity (kg/day)	379 387		After Tax Nominal IRR	12.1%	
21	Design Capacity (kg/yr)	138 476 255		Pre Tay Nominal IRR	17.6%	
		130,470,233			17.0%	

Cash Flow Analysis Worksheet (Central Model Shown)

Risk Analysis Worksheet

The *Risk Analysis* worksheet allows you to perform sensitivity analyses on different variables within the model. You can specify the desired spread for each variable by entering values into the orange cells. After all spreads have been specified, click the *Update Charts and Risk Analysis* button to perform the sensitivity analysis (see image below). The results of the sensitivity analysis are shown graphically in a "tornado chart." The bars within the tornado chart show the range of minimum hydrogen-selling-price values obtained by entering—for each specified variable—a base value, a "lowering" value (a value that reduces the hydrogen price), and an "increasing" value (a value that increases the hydrogen price) while holding all other variables constant at their base values. In addition, the accompanying "waterfall chart" shows the cumulative impact each variable has on the cost of hydrogen. This function draws from the *Enter deviation % for lowering H2 cost* column only (the left column of orange cells). The blue bars show the baseline and adjusted costs of hydrogen resulting from the sensitivity analysis, while the green and orange bars show the impact of each sensitivity variable. Variable names and spreads are shown on the x-axis.

In the central model, the risk analysis also includes Monte Carlo analysis. This analysis uses the nominal value, lowering value, and increasing value for each parameter to establish a triangular distribution. When the sensitivity analysis is run, H2A takes 2,000 random samples from each of the defined input distributions to calculate probability distributions for input parameters and results. Those probability distributions are shown in a chart and table to the right of the waterfall chart. A dropdown menu enables you to choose which risk variable to plot.

For established H2A technology cases, a default sensitivity analysis, tornado chart, waterfall chart, and Monte Carlo analysis (for central cases) are included. The input value ranges used in these analyses are based on feedback from analysts consulted as part of the H2A development process and on ongoing DOE research into the uncertainties inherent to the various hydrogen-production variables.

Energy Feed & Utility Prices Worksheet

The *Energy Feed & Utility Prices* worksheet is the source of price information for the *Energy Feedstocks, Utilities, and Byproducts* calculations within the *Input_Sheet_Template* worksheet (see page 11). It contains five tables, which list projected prices in \$2016 for energy inputs/byproducts through the year 2100:

- AEO_2009_Reference_Case
- AEO_2013_Reference_Case
- AEO_2013_High_Price_Case
- AEO_2014_Reference_Case
- AEO_2017_Reference_Case

The *AEO_2017_Reference_Case* is the default for all established H2A production technology cases.

The raw prices used to make these tables—through the years 2030 (for the 2009 case), 2040 (for the 2013 and 2014 cases), and 2050 (for the 2017 case)—were drawn from the EIA's Annual Energy Outlook (AEO). Archived AEOs are available at www.eia.gov/oiaf/archive.html. The most recent AEO is available at www.eia.gov/oiaf/archive.html. The most recent AEO is available at www.eia.gov/oiaf/archive.html. The most recent AEO is available at www.eia.gov/oiaf/archive.html. The most recent AEO is available at www.eia.gov/oiaf/archive.html. The most recent AEO is available at www.eia.gov/oiaf/archive.html. The most recent AEO is available at www.eia.gov/oiaf/archive.html. The most recent AEO projections were projected using the Joint Global Change Research Institute's GCAM (formerly MiniCAM) model.

	A	В	C	D	E	F	G	Н	1	J	К	L	М	N	
1				-			-					-			
2															
3															
4	AEO 2009 Reference Case	Prices are in \$(2016)/	GJ LHV												1
			Reference												1
			year	Display											
5	Year	Source Data Year	Conversion	Units	Use Category	LHV (MJ/kg)	HHV (MJ/kg)	2004	2005	2006	2007	2008	2009	2010	
6	Feedstock Type														1
7	Residential Natural Gas	2007	1.1446	mmBtu	Feed Utility	47.14126905	52.22466124	16.4669	16.4669	16.4669	15.25424	15.59883	12.88212	13.45325	1
8	Commercial Natural Gas	2007	1.1446	mmBtu	Feed Utility	47.14126905	52.22466124	14.29861	14.29861	14.29861	13.20933	13.62876	10.70655	11.37726	1
9	Industrial Natural Gas	2007	1.1446	mmBtu	Feed Utility	47.14126905	52.22466124	9.560458	9.560458	9.560458	9.033017	10.57876	5.827775	6.609471	1
10	Electric Utility Natural Gas	2007	1.1446	mmBtu	Feed Utility	47.14126905	52.22466124	8.479379	8.479379	8.479379	8.436735	10.66331	5.475667	6.165219	ŧ
11	Bio Methane	2007	1.1446	mmBtu	Feed Utility	47.14126905	52.22466124	14.22387	14.22387	14.22387	14.22387	14.22387	14.22387	14.22387	
12	Woody Biomass	2005	1.2113	kg	Feed	19.55106924	20.58865638	1.54	1.54	1.54	1.54	1.54	1.54	1.54	
13	Woody Biomass B2A	2007	1.1446	kg	Feed	19.55106924	20.58865638	4.36	4.36	4.36	4.36	4.10	3.76	3.50	
14	Woody Biomass MYPP	2007	1.1446	kg	Feed	18.608		5.087134	5.087134	5.087134	5.087134	5.087134	5.087134	5.087134	
15	Electric Utility Steam Coal	2007	1.1446	kg	Feed	22.732203	23.96761519	1.985314	1.985314	1.985314	2.03619	2.209007	2.267613	2.130288	1
16	Commercial Electricity	2007	1.1446	kWh	Feed Utility Byp	prod		30.78719	30.78719	30.78719	30.41123	31.52611	29.95233	26.94569	1
17	Industrial Electricity	2007	1.1446	kWh	Feed Utility Byp	prod		19.96429	19.96429	19.96429	20.20493	22.06208	20.78733	18.25795	1
18	Residential Electricity	2007	1.1446	kWh	Feed Utility Byp	prod		33.8582	33.8582	33.8582	33.83127	34.47233	33.34833	31.04769	1
19															
20															
21															
22	AEO_2013_Reference_Case	Prices are in \$(2016)/	GJ LHV												
			Reference												
			year	Display											L
22	Vear	Source Data Year	Conversion	Units	Ilse Category	LHV (M.I/ka)	HHV (M.I/ka)	2004	2005	2006	2007	2008	2000	2010	ľ

Energy Feed & Utility Prices Worksheet

Non-Energy Material Prices Worksheet

The *Non-Energy Material Prices* worksheet is the source of price information for the *Other Materials and Byproducts* calculations within the *Input_Sheet_Template* worksheet (see page 14). Add new materials simply by adding information in the rows underneath the existing information. You can also modify the prices of materials here if desired.

	Other	Materials	s and Byproduc	cts (Input_Sheet_Ter	nplate Wor	ksheet)		
		В		С	D	E		4
122 Variable O	perating Costs							
123 Other Mater	ials and Byprod	ucts						
124								
Select the M	laterial							
Cooling Water	r			Byproduct				
126 Cooling Water				v opling Water				
127 Demineralized Water	ater			ooning water				
128 Oxygen				\$0.000086 C	R Ente	r Price		
Sulfuric Acid 129 Steam					Ente			
1 Sample User Innu	it Material			\$0				
Lookup Pric	ies			Yes			Add	
131	~~ <u>~</u>							
			Non-Energy Ma	terial Prices Works	neet			
	Ą	В	С	D	E	F	G	H
				Reference Year Conversion -				
				Chemical price indexes are				
1 Other Inpute		Unite	Source Data Vear	used to update costs to	2001	2002	2003	2004
2 Cooling Water		onits	2005	1 095424452	2001	2002 9.6275E.05	2003 9.62E.05	2004 9.627E.04
3 Demineralized	Vater	gal	2005	1 085424453	0.005422998	0.0275E-03	0.005423	0.0272-0.
4 Process Wate		gal	2005	1.085424453	0.001807666	0.00180767	0.001808	0.001807
5 Oxygen		ka	2005	1.085424453	0.021708489	0.02170849	0.021708	0.021708
6 Sulfuric Acid		kg	2005	1.085424453	0	0	0	(
7 Steam		kg	2007	1	0.0135	0.0135	0.0135	0.013
8 Compresseuri	nen oas	kg	2002	1.292434838	0.033086332	0.03308633	0.033086	0.033086
Sample User I	Input Material		2005	1.085424453	0.025	0.025	0.025	0.02
10								
11								
12					1			
	ms entere	ed into [•]	the <i>Non-Ene</i>	rav Material				
15			بريم اممامام مريز					
16 Pri	ces work	sneet a	re added au	comatically to				
17 the	Other M	aterials	and Byprod	ucts drop-				
18				-				
19 CO	wn menu	in the l	nput_Sneet_	lemplate				
20	rkshoot							
21	INSILEEL							
22								
23								
24								
20								
27								
28								
29								
		arpada Chart	Consitivity Applysis	ormy Food & Utility Prison	ray Matorial Pricos		4	

Energy Feed & Utility Prices Worksheet

These tables are included for reference, but they do not perform any functions in the model.

Energy Feed & Utility Prices Data Worksheet

AEO_2017_Reference_Case	2017_Reference_Case Prices are in \$(2016)/GJ LHV										
Year	Source Data Year	Reference year Display Conversion Units	Use Category	LHV (MJ/kg)	HHV (MJ/kg)	2004	2005	2006	2007	2008	2009
Feedstock Type											
Residential Natural Gas	2016	1.0000 mmBtu	Feed Utility	47.14126905	52.22466124	13.60488	15.57176	16.332	15.15567	15.78352	13.69149
Commercial Natural Gas	2016	1.0000 mmBtu	Feed Utility	47.14126905	52.22466124	11.93432	13.90423	14.27414	13.13955	13.89722	11.34567
Industrial Natural Gas	2016	1.0000 mmBtu	Feed Utility	47.14126905	52.22466124	8.264171	10.49561	9.361457	8.898743	10.96551	6.011173
Electric Utility Natural Gas	2016	1.0000 mmBtu	Feed Utility	47.14126905	52.22466124	8.416039	10.63048	10.2417	9.454915	10.43144	7.308143
Woody Biomass	2016	1.0000 kg	Feed Utility	19.55106924	20.58865638	5.096785	5.096785	5.096785	5.096785	5.096785	5.096785

HyARC Physical Property Data Worksheet

The *HyARC Physical Property Data* worksheet contains constants and conversions used in energy feedstock, utility, and greenhouse gas emissions calculations. Most users will not need to add or change information in this worksheet; however, *Tables A* and *C1* contain fields designed to accept user input.

Advanced users might have occasion to change information in *Table A*, the *Energy Feedstock and Utility Properties* table. For an example, see the

"Advanced user" segment under *Energy Feedstocks, Utilities, and Byproducts* (page 13). Although you can add and modify items within *Table A*, do not delete any fields from the table completely; this could create serious errors.

Table C1 contains upstream energy and greenhouse gas emissions values for hydrogen feedstocks for hydrogen production facilities starting operations in 2010. *Table C2* contains the same information for plants starting operations in years 2020 and beyond. These tables are used to calculate the upstream energy use and greenhouse gas emissions shown on the *Results* worksheet (see page 27). Unless otherwise noted, all values in these tables are given as LHV.

HyARC Physical Property Data Worksheet

References

U.S. Department of Energy Hydrogen Program. *Hydrogen Analysis Resource Center— Hydrogen Properties*. Web Site, accessed 11/9/07. Washington, DC: U.S. Department of Energy. <u>http://hydrogen.pnl.gov/cocoon/morf/hydrogen/article/401</u>. The values for the *HyARC Energy Constants and Assumptions* table were downloaded from this Web site.

U.S. Department of Energy Hydrogen Program. *Hydrogen Delivery Component Model version 2.0*. Washington, DC: U.S. Department of Energy.

The upstream energy and greenhouse gas emissions information in *Tables C1* and *C2* came from the Hydrogen Delivery Component Model, *Table 4a*. The ultimate source of the information is the GREET Model, version 1.8b.

Debt Financing Calculations Worksheet

If debt financing is selected on the *Input_Sheet_Template* worksheet, the *Debt Financing Calculations* worksheet amortizes the loan. The results are used in the H2A Model's cash flow analysis (see page 30). No user input is required within this worksheet.

Debt Financing Calculations Worksheet Showing Amortization

	A	В	С	D	E	F	G	H
11	ANNUAL LOAN C	ALCULATION (ïf debt financing	is assumed)				
12								
13	Analysis Year	Loan Year	Principal Owed	Annual Payment	Interest	Principal Payment	New Principal	
14	1	1	\$107,683,171	\$9,388,310	\$6,460,990	\$2,927,319	\$104,755,852	
15	2	2	\$104,755,852	\$9,388,310	\$6,285,351	\$3,102,958	\$101,652,893	
16	3	3	\$101,652,893	\$9,388,310	\$6,099,174	\$3,289,136	\$98,363,757	
17	4	4	\$98,363,757	\$9,388,310	\$5,901,825	\$3,486,484	\$94,877,273	
18	5	5	\$94,877,273	\$9,388,310	\$5,692,636	\$3,695,673	\$91,181,600	
19	6	6	\$91,181,600	\$9,388,310	\$5,470,896	\$3,917,414	\$87,264,186	
20	7	7	\$87,264,186	\$9,388,310	\$5,235,851	\$4,152,458	\$83,111,728	
21	8	8	\$83,111,728	\$9,388,310	\$4,986,704	\$4,401,606	\$78,710,122	
22	9	9	\$78,710,122	\$9,388,310	\$4,722,607	\$4,665,702	\$74,044,420	
23	10	10	\$74,044,420	\$9,388,310	\$4,442,665	\$4,945,644	\$69,098,775	
24	11	11	\$69,098,775	\$9,388,310	\$4,145,927	\$5,242,383	\$63,856,392	
25	12	12	\$63,856,392	\$9,388,310	\$3,831,384	\$5,556,926	\$58,299,466	
26	13	13	\$58,299,466	\$9,388,310	\$3,497,968	\$5,890,342	\$52,409,125	
27	14	14	\$52,409,125	\$9,388,310	\$3,144,547	\$6,243,762	\$46,165,363	
28	15	15	\$46,165,363	\$9,388,310	\$2,769,922	\$6,618,388	\$39,546,975	
29	16	16	\$39,546,975	\$9,388,310	\$2,372,819	\$7,015,491	\$32,531,484	
30	17	17	\$32,531,484	\$9,388,310	\$1,951,889	\$7,436,420	\$25,095,064	
31	18	18	\$25,095,064	\$9,388,310	\$1,505,704	\$7,882,606	\$17,212,458	
32	19	19	\$17,212,458	\$9,388,310	\$1,032,747	\$8,355,562	\$8,856,896	
33	20	20	\$8,856,896	\$9,388,310	\$531,414	\$8,856,896	\$0	
34	21							
35	22							
36	23							
37	24							
14	AFO Data	IVARC Physical Propert	V Data Debt Finan	cing Calculations 🛋	enreciation / Co	ostants and Conversions	Lists	

Depreciation Worksheet

This worksheet calculates depreciation for use in the H2A Model's cash flow analysis (see page 30). No user input is required within this worksheet.

Depreciation Worksheet

	A	В	С	D	E	F	G	H			
41	Inputs from Cash-Input Shee	t	Va	lues ir	nporte	d from					
42	Depreciation Type	MACRS									
43	Depreciation Period (yrs)	20		out_Sr	ieet_i e	empiat	e				
44	Total Initial Depreciable Capital	\$217,915,797	wo	rkshe	et						
45					~						
46											
47 DEPRECIATION CALCULATION TABLE											
								=			
48	Operation Year	Annual Depreciable Capital	1	2	3	4	5	6			
49	-3	\$0	\$0	\$0	\$0	\$0	\$0	\$0			
50	-2	\$0	\$0	\$0	\$0	\$0	\$0	\$0			
51	-1	\$217,915,797	\$8,171,842	\$15,731,341	\$14,550,238	\$13,460,659	\$12,449,529	\$11,516,850			
52	1	\$1,139,385	\$42,727	\$82,252	\$76,077	\$70,380	\$65,093	\$60,216			
53	2	\$1,161,033	\$43,539	\$83,815	\$77,522	\$71,717	\$66,330	\$61,361			
54	3	\$1,183,093	\$44,366	\$85,407	\$78,995	\$73,080	\$67,590	\$62,526			
55	4	\$1,205,571	\$45,209	\$87,030	\$80,496	\$74,468	\$68,874	\$63,714			
56	5	\$1,228,477	\$46,068	\$88,684	\$82,025	\$75,883	\$70,183	\$64,925			
57	6	\$1,251,818	\$46,943	\$90,369	\$83,584	\$77,325	\$71,516	\$66,159			
58	7	\$1,275,603	\$47,835	\$92,086	\$85,172	\$78,794	\$72,875	\$67,416			
59	8	\$1,299,839	\$48,744	\$93,835	\$86,790	\$80,291	\$74,260	\$68,697			
60	9	\$1,324,536	\$49,670	\$95,618	\$88,439	\$81,817	\$75,671	\$70,002			
61	10	\$1,349,702	\$50,614	\$97,435	\$90,120	\$83,371	\$77,109	\$71,332			
62	11	\$1,375,347	\$51,576	\$99,286	\$91,832	\$84,955	\$78,574	\$72,687			
63	12	\$1,401,478	\$52,555	\$101,173	\$93,577	\$86,569	\$80,066	\$74,068			
64	13	\$1,428,106	\$53,554	\$103,095	\$95,355	\$88,214	\$81,588	\$75,475			
65	14	\$1,455,241	\$54,572	\$105,054	\$97,166	\$89,890	\$83,138	\$76,909			
66	15	\$1,482,890	\$55,608	\$107,050	\$99,013	\$91,598	\$84,718	\$78,371			

Constants and Conversions Worksheet

The constants and conversion factors listed on this worksheet are used in H2A calculations and included for users' reference. No user input is required within this worksheet.

	Constants and Conversions Worksneet											
	A	В	С	D	E	F						
1	To Convert From	То	Multiply by:									
2	General											
3	miles	km	1.6093	km/mile								
4	gallons	liters	3.785	L/gal								
5	MPG	kWh/km	0.018263969	(kWh/km)/MF	PG							
6	scf	Nm3	0.026853	Nm3/scf	60 degrees F, 1 atm							
7	lb	kg	0.453514739	kg/lb								
8	ncf	Nm3	0.028317	Nm3/ncf	0 degrees C (32 F), 1 atm							
9	MPa	psi	145.038	psi/MPa								
10												
11	Energy											
12	MJ	kWh	0.277777778									
13	gallon of gasoline eq (GGE) -conventiona	kWh	34.02262529									
14	kg H2 (LHV)	GGE	0.979331964									
15	kg H2 (LHV)	kWh	33.39212175	33.3194444			_					
16	kg H2 (LHV)	GJ	0.120211638									
17	btu	kWh	0.000293083									
18	mmBTU	GJ	1.055									
19												
20												
21	Greenhouse Gas Emissions Facto	ors	IPCC Fourth Ass	essment Repo	ort: Climate Change 2007 (http://www.ipcc.ch/publications_and_data/ar4/wg1	/en/ch2						
22	C02	1										
23	CH4	25										
24	N2O	298										
25												
26												
27	Energy Feedstock Conversions											
28	Usage unit	Conversion	from \$/GJ									
29	mmBtu	1.055										
30	kWh	0.0036										
31	GJ	1										
32												
1	AFO Data HyARC Physical Pror	erty Data	Debt Einancing	Calculations	Depreciation Constants and Conversions Lists							

Constants and Conversions Worksheet

Lists Worksheet

The *Lists* worksheet contains lists of variable labels that the H2A Production Model uses to perform all its calculations. Do not add, delete, or change anything on this worksheet. Modifying the lists could disable or introduce major errors into the model.

	А	В	С	D	E	F	G						
1	Cancelled								F				
2													
3	Use_Default		Yes_No		Temp_var_location	n	Sensitivity_Variables						
4	Use H2A Value		Yes		100000		Operating Capacity Factor (fraction)	cap_fa					
5	Enter Value		No				Plant Design Capacity (kg of H2/day)	design					
6						Assumed start-up year							
7	Add_As_List		Feed_Type_List				Length of Construction Period (years)	constru	=				
8	Feedstock		Feed				Start-up Time (years)	start_tir					
9	Utility		Utility				Plant life (years)	plant li					
10	Byproduct		Feed Utility				Decommissioning costs (fraction of depreciable capital investment)	decom					
11			Feed Utility Bypro	d			Salvage value (fraction of total capital investment)	salvage					
12			Byproduct				Inflation rate (fraction)	inflatior					
13							After-tax Real IRR (fraction)	real_irr					
14	Delete_As_List		ColorList				State Taxes (fraction)	state_ta					
15	Energy Feedstock		Input				Federal Taxes (fraction)	fed_tax					
16	Energy Utility		Calculated				WORKING CAPITAL (fraction of yearly change in operating costs)	Workin					
17	Energy Byproduct		Error				Total Direct Capital Cost	direct_					
18	Other Feed		Information				Total Capital Investment	total_ca					
19	Other Byproduct		UserInfo				Total Fixed Operating Cost	fixed					
20	All						Cost of land (\$/acre)	acre_c					
21							Labor Requirement (FTE)	FTEs					
22							G&A rate (fraction of labor cost)	overhe	1				
23	Scaling_validation						Property tax and insurance rate (fraction of total capital investment)	tax_ins					
24	Use Scale Ratio						Rent (\$/year)	rent					
25	Use Scale Factor						Material costs for maintenance and repairs (\$/year)	materia					
26	Use Baseline Value						Production Maintenance and Repairs (\$/year)	prod_m					
27	Skip						Waste treatment costs (\$/year)	waste_					
28	0.1						Solid waste disposal costs (\$/year)	solidwa					
29	0.2						CO2 sequestration capital costs (\$/year)	CO2_s					
30	0.25								feedstock Industrial Natural Gas Usage	feedsto			
31	0.3				utility Indu		utility Industrial Electricity Usage	utilityIn					
32	0.4												
33			hydical Property Data		oht Einoncing Colculation								

Lists Worksheet

Technical Support

Information related to the new H2A Production Model will be posted on the H2A Web site as it becomes publicly available: <u>www.hydrogen.energy.gov/h2a_production.html</u>. Visit the Web site to download copies of the model and technology cases.

For technical questions not answered by this guide or the Web site, contact:

Michael Penev National Renewable Energy Laboratory 303-275-3880 <u>Michael.Penev@nrel.gov</u>

Appendix 1: Carbon Sequestration Calculations and Sources

This appendix briefly describes the inputs and calculations used within the *Carbon Sequestration* worksheet (which is used for the H2A central model only, see page 21). The calculations are based on the CO₂ Transport and Saline Storage cost models from the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL). See the sources listed in *References* at the end of this appendix for the model user guides, detailed descriptions of the model, and derivations of the calculations. The CO₂ transport and storage models use pumps because super-critical CO₂ exhibits liquid-like density at the pressures and temperatures of carbon sequestration.

The NETL CO₂ Transport cost model was built completely into the H2A model. The model includes the capital costs for purchasing and installing the pipeline, a surge tank, a control system, and the number of pumps needed (including booster pumps). The NETL CO₂ Saline Storage cost model segments costs by project stage (regional evaluation, site characterization, permitting, operations, and post-injection site care and closure) depending on site location and geologic structure and formation. Because H2A is agnostic to location, cost correlations were developed for each project stage based on the P50 cost across all formation locations (226 sites) assuming a general composite formation structure.

The Carbon Sequestration worksheet is divided into five tables:

Г

Table	Purpose	User Input Required
Carbon Sequestration Information	Source of values for carbon sequestration calculations	No
Carbon Sequestration Input Values	Source of values for carbon sequestration calculations	Yes
Carbon Transport Calculations	Calculate carbon transportation results	No
Carbon Storage (Saline) Calculations	Calculate carbon storage results	No
Summary of Output Values	Display carbon sequestration results	No

See the screen captures of the tables below. The numbers on the left of each table correspond with the numbered descriptions of each field.

Carbon Sequestration Information

Carbon Sequestration Information		
1 CO2 Produced from Feedstock (metric tons CO2/year)	1,153,600	CO2 emissions are based on the carbon content of the feed. See the Physical Properties Table for specific values
2 CO2 Produced from Feedstock (kg CO2/kg H2)	9.26	
3 CO2 Mass Flowrate (metric tons/day)	2844	
4 CO2 Mass Flowrate (G metric tons/year)	1.04	
5 Electricity Cost (\$/kWh)	0.0700	Price for industrial electricity in the startup year
6 Carbon Sequestration Electricity Usage (kWh/kg H2)	0.0531	

1, 2. *CO2 Produced from Feedstock*—CO₂ emissions produced from the feedstock are calculated based on the properties of the feedstock and the amount of feedstock used in hydrogen production. The feedstock type and use information comes from the *Input_Sheet_Template* worksheet. The properties come from the *HyARC Physical Property Data* worksheet.

3, **4**. *CO2 Mass Flowrate*—The CO₂ mass flow rate (the mass of CO₂ transported to the injection site each day) is calculated using the value for CO₂ produced from feedstock (**1**) and the carbon capture efficiency (**7**).

5. *Electricity Cost*—The industrial electricity cost is drawn from the *Energy Feed & Utility Prices* worksheet for each year of the calculations. The startup year cost is shown here.

6. Carbon Sequestration Electricity Usage—This value is calculated using the power requirement (**24**) from the Carbon Sequestration Calculations table (in the Carbon Sequestration worksheet) and the capacity factor and plant output from the *Input_Sheet_Template* worksheet.

	Carbon Sequestration Input Values	Windows Set to 0 to tu	User: urn off	
	Process Design Parameters	/	carbon sequ	Lestration
7	Carbon Capture Efficiency (%)	90.00%	🗹 H 2a D efau It	Set to 0 to turn off CCS
8	CO2 capture process outlet pressure (psia)	14.7	🗹 H 2a D efau It	Inlet pressure for CO2 transport (pump suction
9	Number of Pumps (H2 Production Site + Booster Pumps)	1	🗹 H 2a D efault	
10	Pump Efficiency	75%	🗹 H2a Default	
11	Pipeline Control System	Yes	🗹 H2a Default	
12	CO2 Surge Tank	Yes	🗹 H2a Default	
13	Pipeline length (miles)	100	🗹 H2a Default	
14	Pipeline Elevation Change (ft)	0	🗹 H 2a Default	
15	Pipeline Nominal Diameter (in)	8		
	Process Conditions			
16	Pipeline Temperature (°F)	53	🗹 H 2a D efau It	Ground temperature
17	CO2 Density (kg/m3)	866		PR Equation of state: pcoz =
				denPRCO2(v _{co2-init} , P _{ave} , T _{Pipeline})
	Other Considerations			
18	CO2 capture credit (\$/metric ton CO2 captured)	\$0.00	🗹 H 2a D efault	
19	Operation and maintenance factor for equipment (pumps, etc.)	0.040	🗹 H 2 a D efau It	
	Finance Parameters			
20	After Tax Real Capital Recovery Factor	0.102		
21	Real Present Value of Depreciation	0.487		
22	Approx Capital Charge Rate	0.136		

Carbon Sequestration Input Values

7. *Carbon Capture Efficiency*—Input the percentage of CO_2 emissions captured here (note: only CO_2 emissions from feedstock processing can be captured). This value is used in the calculation of CO_2 mass flow rate (**3**). Setting this value to 0% turns off carbon sequestration. The default value is 90%.

8. CO2 Capture Process Outlet Pressure—Input the value for the pressure of CO₂ exiting the capture phase and entering the compression phase here. This value becomes the inlet pressure in the CO₂ compression calculations (**24**). The default value is 14.7 psia (atmospheric pressure).

9. *Number of Pumps (H2 Production Site + Booster Pumps)*—Input the number of pumps used along the pipeline including the pump at the site of hydrogen production as well as any booster pumps needed. This is used in the pipeline nominal diameter (**15**) and the pump cost (**24**) calculations. The default value is 1.

10. *Pump Efficiency*—Input the pipeline pump efficiency factor here. This is used in the pump cost calculations (**24**). The default value is 75%.

11. *Pipeline Control System*—Input whether or not the pipeline will have a control system. This value is used in the Other Equipment Costs (**25**). The default value is "Yes."

12. CO2 Surge Tank—Input whether or not the pipeline will have a CO2 surge tank to accommodate fluctuations in process output or flowrate. This value is used in the Other Equipment Costs (**25**). The default value is "Yes."

13. *Pipeline Length*—Input the pipeline length here. This value is used in the calculations for pipeline nominal diameter (**15**) and pipeline costs (**23**). The default value is 100 miles. Required CO₂ transportation distances (i.e., required pipeline lengths) vary by location.

14. *Pipeline Elevation Change*—Input the elevation change that the pipeline traverses as measured from the CO2 production site to the CO2 injection site to account for head pressure loss due to elevation differences. This value is used in the pipeline nominal diameter calculation (15). The default value is 0.

15. *Pipeline Nominal Diameter*—This is calculated based on the CO2 flowrate (**3**), the number of pumps (**9**), the pipeline length (**13**), the pipeline elevation change (**14**), pipeline temperature (**16**), and pipeline inlet and outlet pressures (**24**).

16. *Pipeline Temperature*—Input the pipeline temperature here. This value is used in the calculation for pipeline nominal diameter (**15**) and CO2 density (**17**). The default value is 53°F.

17. *CO2 Density*—The CO2 density is calculated here. This value is based on the pipeline temperature (**16**) and is used in the CO2 pump costs (**24**).

18. CO2 Capture Credit—Input the value for CO₂ capture credits here. If a value is entered, the credits offset operation and maintenance costs (**30**). The default value is zero.

19. Operation and Maintenance Factor for Equipment (pumps, etc.)—Input the equipment operation and maintenance factor here. This value is used in the CO2 pump costs (**24**) and CO2 other equipment costs (**25**). The default value is 0.04.

20–22. These factors (after tax real capital recovery factor, real present value of depreciation, and approximate capital charge rate) are automatically calculated using values from the *Input_Sheet_Template* worksheet and financial calculations. They are used in the carbon sequestration calculations for capital, electrical, and O&M cost per metric ton of CO₂ sequestered. The capital and operating costs for carbon sequestration are also included in the model's discounted cash flow calculations—see the *Cash Flow Analysis* (page 30) and

Results (page 27) sections. The results shown on the *Results* worksheet are for the entire plant.

23–25. The *Carbon Transport Calculations* table shows the transportation cost calculations based on the input and calculation tables described above as well as default values and constants. The table is broken down by equipment associated with the transportation of CO2 from the production plant to the injection site including pipeline (**23**), pumps (**24**), and other equipment (**25**). Within each equipment category, the costs are further segmented into capital, operating, and utility costs. The cost basis is referenced next to each line item. See Morgan et al. (2014) for additional cost calculation details. Do not change any of the cells in this table directly.

26. The *Carbon Storage (Saline) Calculations* table shows the storage cost calculations based on the input and calculation tables described above as well as default values and constants. The storage costs are segmented by capital and operating expenses before being segmented further by project stage. The cost basis is referenced in the notes/references section of the table. See Grant et al. (2014) for additional cost calculation details. Do not change any of the cells in this table directly.

The calculations for the cost of carbon transport and storage per metric ton of CO₂ are based on the capital recovery factor (CRF) method rather than a rigorous discounted cash flow method, which is used for the H2A Model's hydrogen production calculations. Although the CRF method is not quite as rigorous, the results are comparable when the same economic parameters are used.

27–35. The *Summary of Outputs* table summarizes the major results of the carbon sequestration calculations. Costs are broken down into capital costs (**28**), utility costs (**29**), O&M costs (**30**), and property tax and insurance costs (**31**). These values are then combined and normalized by the metric tons of CO₂ sequestered (**32–34**). The total cost per metric ton of carbon sequestered is reported at the bottom of the table (**35**). Costs are shown in reference year dollars. Do not change any of the cells in this table directly.

	Carbon Transport Calculations		
23	CO2 Pipeline Costs (2016 USD)		Units
	Capital Costs		
	Adjustment factor (Natural Gas Pipeline -> CO2 Pipeline)	1.00	
	Material Capital	7,416,658	2016\$
	Labor	27,966,033	2016\$
	Right of Way and Damages	4,735,517	2016\$
	Miscellaneous (Surveying, engineering, supervision, etc.)	10,287,680	2016\$
	Pipeline Capital Cost Per Mile	504,059	2016\$/mile
	O&M Costs		
	Pipeline cost of \$5000/mi-yr	693,420	2016\$/year
24	CO2 Pump Costs		
	Capital Costs		
	Inlet Pressure	15	psia
	Outlet Pressure	2176	psia
	Pump Power	839	kW
	Pump Fixed Cost	80,989	2016\$
	Pump Variable Cost	1,077,878	2016\$
	Pump Capital Cost	1,158,867	2016\$
	Electricity Costs	462.067	2045®haar
	Ecomp = elec cost*wcomp*(capacity lactor*24*365)*n_pumps Electricity concumption	403,007	2015\$/year
	Electricity consumption	0.053	KWN/Kg H2
	O&M Costs		
	(Total Other Equipment Cost) * O&M Factor	46,354.68	2016\$/year
25			
25	CO2 Other Equipment Costs		
25	CO2 Other Equipment Costs Capital Costs		
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank	490,829	2016\$
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System	490,829 65,761	2016\$ 2016\$
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System	490,829 65,761	2016\$ 2016\$
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Eactor	490,829 65,761 22,264	2016\$ 2016\$ 2016\$/vear
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor	490,829 65,761 22,264	2016\$ 2016\$ 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations	490,829 65,761 22,264	2016\$ 2016\$ 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD)	490,829 65,761 22,264	2016\$ 2016\$ 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$)	490,829 65,761 22,264	2016\$ 2016\$ 2016\$/year Units
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation	490,829 65,761 22,264 109,498	2016\$ 2016\$ 2016\$/year Units 2016\$
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization	490,829 65,761 22,264 109,498 67,506,648	2016\$ 2016\$ 2016\$/year Units 2016\$ 2016\$
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting	490,829 65,761 22,264 109,498 67,506,648 18,233,681	2016\$ 2016\$ 2016\$/year Units 2016\$ 2016\$ 2016\$ 2016\$
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expanses	490,829 65,761 22,264 109,498 67,506,648 18,233,681	2016\$ 2016\$ 2016\$/year Units 2016\$ 2016\$ 2016\$ 2016\$
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations	490,829 65,761 22,264 109,498 67,506,648 18,233,681 7,011,359	2016\$ 2016\$ 2016\$/year Units 2016\$ 2016\$ 2016\$ 2016\$ 2016\$
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure	490,829 65,761 22,264 109,498 67,506,648 18,233,681 7,011,359 6 132,903	2016\$ 2016\$ 2016\$/year Units 2016\$ 2016\$ 2016\$ 2016\$ 2016\$ 2016\$/year 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure Total ongoing capital expenses	490,829 65,761 22,264 109,498 67,506,648 18,233,681 7,011,359 6,132,903 13,144,262	2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$ 2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure Total ongoing capital expenses	490,829 65,761 22,264 109,498 67,506,648 18,233,681 7,011,359 6,132,903 13,144,262	2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure Total ongoing capital expenses Expense Costs by Stage	490,829 65,761 22,264 109,498 67,506,648 18,233,681 7,011,359 6,132,903 13,144,262	2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure Total ongoing capital expenses Expense Costs by Stage Regional Evaluation	490,829 65,761 22,264 109,498 67,506,648 18,233,681 7,011,359 6,132,903 13,144,262	2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$/year 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure Total ongoing capital expenses Expense Costs by Stage Regional Evaluation Site Characterization	490,829 65,761 22,264 109,498 67,506,648 18,233,681 7,011,359 6,132,903 13,144,262	2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$ 2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure Total ongoing capital expenses Expense Costs by Stage Regional Evaluation Site Characterization Permitting	490,829 65,761 22,264 109,498 67,506,648 18,233,681 7,011,359 6,132,903 13,144,262	2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$ 2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * O&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure Total ongoing capital expenses Expense Costs by Stage Regional Evaluation Site Characterization Permitting Operations	490,829 65,761 22,264 22,264 109,498 67,506,648 18,233,681 7,011,359 6,132,903 13,144,262	2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$ 2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year
25	CO2 Other Equipment Costs Capital Costs CO2 Surge Tank Pipeline Process Control System O&M Costs (Total Other Equipment Cost) * 0&M Factor Carbon Storage (Saline) Calculations CO2 Storage Cost Breakdown (2007 USD) Capital Costs by Stage (Annual Cost of 40 year project in 2016\$) Regional Evaluation Site Characterization Permitting Ongoing Capital Expences Operations Post Injection Site Care & Site Closure Total ongoing capital expenses Expense Costs by Stage Regional Evaluation Site Characterization Permitting Operations Post Injection Site Care & Site Closure Total ongoing capital expenses Expense Costs by Stage Regional Evaluation Site Characterization Permitting Operations Post Injection Site Care & Site Closure Post Injection Site Care & Site Closure	490,829 65,761 22,264 22,264 0,506,648 18,233,681 7,011,359 6,132,903 13,144,262 11,503 2,912 4,575,909 4,169,822	2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$ 2016\$ 2016\$ 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year 2016\$/year

Carbon Sequestration Calculations

1						
27	Summary of Output Values					
	(CO2 Seq. costs are reported on Results Tab as part of total H2 Production cost)					
	·		-		-	
28	Capital Costs					
	-					
	<u> </u>					
	CO2 Pipeline	\$	50,405,888			
	CO2 Pumps	\$	1,158,867			
	CO2 Other Equipment	\$	556,591			
	CO2 Storage (annualized)	\$	85,849,827			
		\$	137,971,172	Total	(2016\$)	
	Approx. Uninstalled Equipment Cost	\$	109,068,654			
		_				
	1					
29	Electrical Costs (annual cost)					
20	CO2 Compressor	¢,	463.067	_		
	CO2 Compressor	Φ	403,007			
	CO2 Injection	¢				
	(Site and wells)	Ψ				
		s				
		¢	463 067	Total	(2016\$)	
30	O&M (annual cost)	4	403,001	Total	20104	
	CO2 Canture Credit	S				
	CO2 Dipuline	ŝ	693 420			
	CO2 Pumps	S	46 355			
	CO2 Other Equipment	s.	22 264			
		Ψ	8 760 1/7			
	CO2 Storage	¢	9 522 185	Total	(2016\$)	
	1	Φ	3,322,103	Total	(20104)	
31	Property tax and insurance	\$	2,759,423	Total	(2016\$)	
32	Carbon Sequestration Energy Charge	(\$	/tonne CO2)		\$0.40	
33	Carbon Sequestration O&M Charge (\$/te	nne CO2)		\$11.80	
34	Approx Carbon Seg. Can. Charge (\$/t	ton	na CO2)		\$33.80	
35	Approx Carbon Seq. Cap. Charge (\$/tonne CO2) \$33.80					
20	rotal transportation and storage cost (w/o capture) \$46.00					

Summary of Output Values

References

The calculations used in the *Carbon Sequestration* worksheet were developed by the DOE Office of Fossil Energy's NETL. The carbon transportation and storage cost calculations are based on the following publications:

Morgan, D.; Grant, T.; Simpson, J.; Myles, P.; Poe, A.; Valenstein, J. (2014). *FE/NETL CO2 Transport Cost Model: Description and User's Manual*. Pittsburgh, PA: National Energy Technology Laboratory. <u>https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=630</u>

This study develops a mathematical model that estimates the costs of transporting liquid CO₂ using a pipeline. Pipeline costs are functions of pipeline length and diameter. Diameter is calculated dynamically based on the input pipeline length, flowrate, and allowable pressure drop. The pipeline network also includes options for surge tanks and a control system.

Grant, T.; Morgan, D.; Poe, A.; Valenstein, J. (2014). *FE/NETL CO2 Saline Storage Cost Model: User's Manual.* Pittsburgh, PA: National Energy Technology Laboratory. <u>https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=529</u>

This report develops a mathematical model to estimate the costs of injecting and storing CO₂ in saline formations. Saline formations were chosen owing to their large storage capacity, whereas other methods such as depleted oil and gas mines and un-mineable coal seams have limited locations and capacity for large-scale sequestration. The report breaks down carbon storage costs into five main categories: regional evaluation, site characterization, permitting, operations, and post-injection site care and site closure. Each category breaks down costs by line item and characterizes them as either capital or operating expenses. Finally, costs depend on both site location and geologic structure and formation.

Appendix 2: Distributed Model Version 3 Updates

Introduction

Version 2 of the H2A Production Model was released in 2008. Since then, multiple improvements were made, culminating in the release of version 3 in 2012. This appendix lists the major assumptions behind version 3 and details the rationale for the changes made since version 2. Although the changes discussed specifically apply to the current timeframe distributed steam methane reformer (SMR) production case, they are broadly applicable to the other distributed production cases. Table 1 summarizes version 3 improvements, which are detailed in the subsequent sections of this appendix.

Table 1. Summary of changes from HZA distributed model version 2 to version 5					
Version 2		Version 3			
Hydrogen Compression, Storage and Dispensing					
Reformer sizing	Size set by user	Sized for peak hydrogen demand			
Refueling pressure	5,000 psi	10,000 psi			
G	eneral and Financial Input Val	ues			
Reference year	2005	2007			
Assumed start-up year*	2005	2010			
	Direct Capital Costs				
All direct capital costs	\$2005	Escalated to \$2007			
	Provious H2A accumptions	Adjusted based on new PSA data			
Pressure swing adsorption	Previous HZA assumptions,	and Nth-plant assumptions,			
	\$2005	escalated to \$2007			
	ndirect Capital and Other Cos	sts			
Site preparation	\$74,344	\$188,000			
Engineering & design	\$30,000	\$50,000			
Project contingency	5% of direct capital	15% of direct capital			
Insurance costs	\$0	TBD			
Initial spares	\$0	0.75% of total capital cost			
Pre-paid royalties	\$0	0.75% of total process cost			
Installation	10% of uninstalled cost	17% of uninstalled cost			
Feedstock Prices					
Foodstock price course	FIA (2005) \$2002	EIA (2009), \$2007; constant-price			
Feedstock price source	EIA (2005), \$2003	biomethane (Saur 2011)			
Foodstock price reference year	2005	Conversion to reference year			
reeusiock price reference year	2005	dollars for 2005–2010			

Table 1. Summary of changes from H2A distributed model version 2 to version 3

*Current timeframe case

Hydrogen Compression, Storage, and Dispensing

The compression, storage, and dispensing (CSD) component is one of the primary differences between version 2 and version 3 of the H2A distributed model. Figure 1 illustrates the primary equipment for distributed hydrogen production and CSD. The H2A distributed model treats hydrogen production and CSD separately.

In version 2, the user set the design capacity of the onsite reformer, and the station components were sized to accommodate the output of the reformer. Enough hydrogen storage was provided to accommodate daily and weekly peaks in demand. In version 3, the user determines the desired output of the station, and the reformer is sized to produce enough hydrogen to meet peak demand. The primary consequence of this change is that fluctuations in hydrogen demand (e.g., high demand on a summer Friday afternoon) are met

by making the reformer large enough to meet these peaks. When less hydrogen is needed, the reformer is operated at less than its design capacity. Onsite storage only provides hydrogen during planned and unplanned outages of the hydrogen production equipment. The other major CSD change is increasing the default refueling pressure from 5,000 psi (version 2) to 10,000 psi (version 3).

Figure 1. Schematic of distributed SMR hydrogen production and CSD

For distributed electrolysis, hydrogen is delivered from the production process to the compressors (CSD) at 435 psi. Savings in compressor capital and operating costs are credited to the production process.

Nth-Plant Assumptions

A number of the capital and installation cost-related improvements to version 3 of the model arise from an improved understanding of the "Nth-plant" concept. The nominal assumption when constructing distributed production cases is that the capital cost and plant operating parameters reflect Nth-plant conditions: a mature system that is functioning reliably in the field and has been produced in sufficiently high annual and cumulative volumes as to have a capital cost (and unit cost) close to its asymptotic limit.

At low manufacturing rates, capital costs are high due to poor use of capital and relatively time-intensive manufacturing and assembly methods. As manufacturing rates increase, more efficient production methods become economical, capital cost (per unit output) decreases, and unit cost decreases. At extremely high manufacturing rates, all possible cost improvements have been achieved, and production rates are only increased by replicating process machinery. At those levels, capital cost per unit output becomes flat relative to manufacturing rate. For H2A production cases, Nth-plant conditions pertain to the point along the curve past the knee, where most cost reduction from high manufacturing rate (see Figure 2).

H2A Production Model Version 3.2018 User Guide - DRAFT 11/9/18

Figure 2. Hypothetical hydrogen production cost curve over time showing a technology readiness date of approximately 2015.

The Nth-plant assumption affects the H2A cost computations in two ways. The primary effect is to the estimated plant capital cost, which is calculated based on a relatively mature system produced in production quantities, not an initial or "one off" system. Incorporated into the capital cost estimate are factors such as bulk discounts on material costs, low-cost manufacturing and assembly methods made possible by serial production of the systems, efficient and streamlined business operations, and a lower profit margin consistent with a mature product that must be priced competitively with alternative systems.

The second effect to the H2A cost computation is the level of uncertainty and markup applied to the system. A new, unproven, and immature technology would be linked with a high cost contingency, high station engineering costs, extensive break-in period, relatively intensive manpower requirements, and high expected outage rate. The Nth-plant assumption is the opposite of this scenario: the values for the abovementioned parameters are based on a mature technology, mostly beyond early-phase field problems.

AACE Cost Guidance

The indirect capital costs for version 3 of the H2A distributed model were developed using guidance provided by the Association for the Advancement of Cost Engineering International (AACE International), a professional society dedicated to advancing, normalizing, and documenting the science of engineering cost estimation. AACE International publishes recommended guidance reports on a variety of subjects. The following are the two most relevant to H2A modeling:

- AACE International Recommended Practice No. 18R-97, "Cost Estimate Classification System – as Applied In Engineering, Procurement, and Construction for the Process Industries."
- AACE International Recommended Practice No. 16R-90, "Conducting Technical and Economic Evaluations as Applied for the Process and Utility Industries."

Although these AACE International reports are excellent references, they apply primarily to one-of-a-kind engineering projects and do not necessarily capture the Nth-plant assumptions. Consequently, the AACE International practices are treated as guidance rather than hard rules in the H2A distributed model.

General and Financial Input Values

Version 3 has two differences in general and financial input values compared with version 2: reference year (i.e., base-year dollars) and assumed start-up year. These are shown in Table 2 and discussed in the subsections below.

Distributed Model Financial Input Values	Version 2	Version 3	
Reference year	2005	2007	
Assumed start-up year	2005	2010	

Table 2. H2A distributed model version 3 differences in general and financial input values

Reference Year

The reference year determines the base-year dollars used in the model, i.e., the nominal-year currency in which hydrogen costs are reported. Version 2 reported hydrogen costs in 2005 dollars; version 3 reports them in 2007 dollars.

The way capital costs are adjusted for inflation affects the projected hydrogen cost. For version 3, capital costs are updated to 2010 dollars using the composite index of the *Chemical Engineering Magazine* Plant Cost Index (CEPCI). The composite index charts actual inflation in a basket of chemical plant cost categories (heat exchangers, piping, construction, labor, compressors, etc.) and thus narrowly calculates the annual increase in plant equipment and preparation costs. Once plant cost is determined in 2010 dollars, the value is deflated to 2007 dollars using the Consumer Price Index (CPI). The CPI is a broad measure of U.S. inflation and thus is appropriate for adjusting the generic buying power of money over time. Using the two indexes (CEPCI and CPI) together results in a current (2010) estimate of hydrogen costs stated in 2007 dollars. Table 3 shows indexes used to escalate the costs to 2007 dollars.

Table 3. General inflation, plant cost, and labor indexes used to escalate costs to 2007 dollars (tables are included in the H2A "HyARC Physical Properties Data" tab)

TABLE B - GDP Implicit Defla GDP Implicit Price Deflator (Index, Energy Outlook, Table 1 November http://www.eia.doe.gov/emeu/steo/	ator Price Index 2005=100), Available from Short Term 2009 pub/contents.html	TAI From Mag Ave	BLE B2 m Chemic gazine raged Anr	- Plant Cost Inde al Engineering nual Index	TABLE B3 - Lat From the Bureau o Statistics Average Hourly Ea		Labor Index au of Labor Earnings of
Year	Value		Year	Value		Year	Value
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2001 2002 2003 2004 2005 2006 2007	76.537 78.222 79.867 81.533 83.083 84.554 85.507 86.766 88.648 90.654 92.113 94.099 96.769 100 103.263 106.221		1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	358.20 359.20 368.10 381.10 381.70 386.50 399.50 390.60 394.10 394.30 395.60 402.00 444.20 448.20 499.60 525.40		1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	13.70 13.97 14.33 14.86 15.37 15.78 16.23 16.40 17.09 17.57 17.97 18.50 19.17 19.67 19.66 19.55
2008 2009 2010	108.5 109.8 111.1		2008 2009 2010	575.40 521.90		2008 2009 2010	19.50 20.3

Assumed Start-up Year

The assumed version 3 current/near-term plant start-up year is 2010 (compared with a version 2 start-up year of 2005). Plants are assumed to be produced in quantities consistent with the Nth-plant assumption in 2010. Although this assumption may not be feasible, it is made so that the H2A cost estimates reflect a mature-system hydrogen price in the first year the technology could be fielded.

Direct Capital Costs

Direct capital costs were changed in version 3 based on escalating to 2007 dollars. In addition, the pressure swing adsorption (PSA) direct capital cost was adjusted in version 3 based on a better understanding of technology costs. Table 4 shows the direct capital cost changes made in version 3.

Major pieces/systems of equipment	Baseline Uninstalled Costs \$2005 Dollars	Baseline Uninstalled Costs \$2007 Dollars	Installation Cost Factor	Baseline Installed Costs
Water Feed System	\$ 4,099	\$ 4,599	1.17	\$ 5,381
Primary Feed System	\$ 10,428	\$ 11,702	1.17	\$ 13,691
Boiler	\$ 27,802	\$ 31,198	1.17	\$ 36,502
Superheater	\$ 5,562	\$ 6,241	1.17	\$ 7,302
HDS & Absorbent Bed	\$ 6,107	\$ 6,853	1.17	\$ 8,019
Burner	\$ 2,960	\$ 3,322	1.17	\$ 3,886
Reformer	\$ 183,196	\$ 205,577	1.17	\$ 240,525
Water Gas Shift	\$ 152,088	\$ 170,669	1.17	\$ 199,683
HDS Preheater	\$ 3,144	\$ 3,528	1.17	\$ 4,128
Primary Air Feed System	\$ 3,552	\$ 3,986	1.17	\$ 4,664
Reformate Cooler	\$ 30,265	\$ 33,963	1.17	\$ 39,737
Condenser	\$ 31,920	\$ 35,819	1.17	\$ 41,908
Air Feed System for Condenser	\$ 667	\$ 748	1.17	\$ 876
Pressure Swing Adsorption Unit	\$ 153,526	\$ 172,282	1.17	\$ 201,570
Water Purification	\$ 31,645	\$ 35,511	1.17	\$ 41,548
Structural Supports	\$ 17,908	\$ 20,096	1.17	\$ 23,512
Controls System	\$ 32,506	\$ 36,477	1.17	\$ 42,678
System Assembly	\$ 186,578	\$ 209,373	1.17	\$ 244,966
Miscellaneous	\$ 79,075	\$ 88,736	1.17	\$ 103,821
		\$-		\$ -
		\$-		\$ -
		\$-		S -
TOTALS	\$ 963,027	\$ 1,080,680		\$ 1,264,396

Table 4. H2A distributed model version 3 differences in direct capital costs (\$2005 uninstalled costs are
from version 2, \$2007 uninstalled costs and installed costs are from version 3)

PSA Cost

The version 3 capital cost scaling relationship is based on proprietary data from a PSA manufacturer, adjusted for parameters consistent with the Nth-plant assumption. Specifically, the PSA scaling relationship is based on purification of an SMR reformate stream (~75% H₂, 25% CO₂, dry gas) to "five nine" purity hydrogen gas, gross margins of 50%, approximately 100 systems produced per year, and no installation charges included in the cost. The capital cost of the PSA system is expected to scale with bed size, which in turn scales with hydrogen gas flow. Although the bed size grows linearly with hydrogen production rate, the overall cost scaling is highly non-linear owing to the relatively high cost fraction of valves and assembly. The following are the cost-scaling curve equations used:

New PSA Cost =
$$BaseCost * \left(\frac{NewBedSize}{BaseBedSize}\right)^{CostFactor} = $54,750 * \left(\frac{XX kgH_2 / day}{115 kgH_2 / day}\right)^{0.4}$$

For a 1500 kgH₂/dayPSAUnit =
$$54,750 * \left(\frac{1500 kgH_2 / day}{115 kgH_2 / day}\right)^{0.4} = $153,526$$

Indirect Capital and Other Costs

Indirect capital and other costs were changed in version 3 primarily based on AACE guidance and Nth-plant assumptions. The improvements to version 3 are summarized in Table 5 and discussed below.

Field	Version 2	Version 3	Comment/Basis
Site preparation (\$)	\$74,344	\$188,000	Based on AACE formula for foundations/misc. CA H₂ stations will provide valuable data.
Engineering & design (\$)	\$30,000	\$50,000	
Process contingency (\$)	\$0	\$0	AACE lists range as 0%–10% if "process is used commercially."
Project contingency (\$)	5% of direct capital	15% of direct capital	AACE recommends 25% but lists range of 15%–30%. Low end of range was selected because this is an Nth plant.
Initial spares	\$0	0.75% of total capital cost	AACE recommends 0.5%–1.0%.
Pre-paid royalties	\$0	0.75% of total project cost	AACE recommends 0.5%–1.0%.
Installation	10% of uninstalled cost	17% of uninstalled cost	Hybrid method partially based on AACE recommendations for setting of equipment.

Table 5. H2A distributed model version 3 differences in indirect capital and other costs

Site Preparation

Site preparation refers to the physical preparation of the distributed plant location prior to installation of the hydrogen production equipment. It encompasses clearing and leveling the ground, cement foundations for the equipment, running electrical/gas/water lines to the site, and electricity upgrades (if necessary).

Site preparation for distributed production units is difficult to predict with accuracy given the scarcity of public production system installation cost data. Nth-plant considerations add additional uncertainty. However, costs for cement foundations are expected to be approximately the same whether for one-of-a-kind stations or modular/replicated stations. Only the station layout and engineering costs, and possibly the extent to which fluid connections can be simplified for rapid installation, would benefit from being the Nth plant. Consequently, site preparation costs are based heavily on "standard" costing methods and are not modified for the Nth-plant assumption.

Site preparation costs for distributed plants are based on a modification of AACE guidance. AACE presents guidance for "handling" and "setting," which together sum to what H2A calls site preparation and installation. To isolate an AACE estimate for distributed system site preparation, the AACE estimates for "Foundations" and "Miscellaneous" are summed for the system category of ">150psi, >400F Gas Process." AACE reports these costs as the following:

- Foundation materials: 5% of process costs
- Foundation labor: 6.65% of process costs
- Miscellaneous materials: 4% of process costs
- Miscellaneous labor: 3.2% of process costs.

This adds up to 18.85% of total process costs. Because the distributed production total process costs vary, but the site preparation costs may be approximately the same for multiple

technologies, this percentage is applied to an average distributed process cost of \$1M. This yields a site preparation cost of \$188,000.

Process and Project Contingency

The AACE recommended practice is to include two types of contingencies in cost analysis: process contingency and project contingency. Contingencies cover omissions and unforeseen costs, and their magnitude generally decreases with detailed analysis or experience that leads to specific enumeration of costs. The process contingency adjusts for uncertainty in the technical performance due to limited design data. AACE indicates the process contingency range to be 0%–10% for commercial projects and 40%+ for new concepts with limited data. The H2A assumption is a 0% process contingency in keeping with the Nth-plant assumption of a well-vetted, commercial operation.

The project contingency covers additional cost that would be uncovered by a detailed costing analysis. AACE recommended practice is to set the project contingency at 15%–30% of project cost. The low end of the range, 15%, was selected for version 3 to project the most likely cost—rather than the upper-bound cost—for an Nth-plant system.

Initial Spares and Pre-Paid Royalties

For initial spare parts capital costs, the AACE recommends a range of 0.5%–1.0% of total project capital cost. The mid-point value (0.75%) is used in H2A version 3, whereas 0% was used in version 2.

For pre-paid royalties, the AACE recommends a range of 0.5%–1.0% of total project cost. The mid-point value (0.75%) is used in H2A version 3, whereas 0% was used in version 2.

Installation

Installation refers to the costs of transporting, placing, connecting, and verifying initial operation of system equipment. Installation costs for version 3 were raised to 17% of total direct uninstalled capital cost per the following breakdown:

- Sales tax 5% based on typical state sales tax
 Shipping 1% based on actual "Low-Rider" coast-to-coast transport of single large load
 Insurance 1% based on shipping insurance estimate
- Setting 10% based on ½ of AACE generic recommended value (reduced due to Nth-plant considerations).

Feedstock Prices

The H2A model requires current and projected future feedstock prices. The default set of projected feedstock prices is from the Energy Information Agency (EIA) Annual Energy Outlook (AEO) 2009 Reference Case (EIA 2009). AEO 2009 price projections are presented in 2007 dollars, so no escalation of the prices is required. In addition, the AEO 2009 High Price Case (EIA 2009) and the AEO 2010 Reference Case (EIA 2010) are available in the H2A model as pull-down menu options. Biomass is not included in the AEO projections, so biomass projections created by DOE's Biomass Program are used. Table 6 shows the sources for feedstock prices and properties for version 2 and version 3.

To accommodate lifecycle modeling of hydrogen production facilities, the AEO price projections were extrapolated beyond the 2030 end date for the AEO data. The GCAM (formerly MiniCAM) model (Joint Global Change Research Institute 2011) was used to extrapolate out-year feedstock prices (Table 7).

Field	Description/Data Source for Version 2	Description/Data Source for Version 3	
Fleiu	Description/Data Source for Version 2	Description/Data Source for Version 5	
All feedstock prices except biomass and biomethane	EIA (2005): High A Case, Appendix C, Table 3 (Energy Prices by Sector and Source), 2003 dollars	EIA (2009): Reference Case (Stimulus Scenario), Table 3 (Energy Prices by Sector and Source), 2007 dollars	
Biomass (farmed trees) prices	DOE (2011b), feedstock and utility price projections for 2001–2070, EIA units, 2005 dollars	DOE (2011c)	
Biomethane prices	Not included in version 2	Saur (2011): \$13.11/mmBtu, assumed constant through 2070, 2010 dollars	
Price projections, 2031–2070	GCAM projections (Table 7)	GCAM projections except for biomethane, which is assumed constant	
Conversion to reference year dollars, all feedstocks	2005 reference year	Conversion to reference year dollars automatically included in price tables for any reference year between 2005 and 2010	
Conversion from HHV to LHV, all feedstocks	DOE (2011a)	Same as version 2	

HHV-higher heating value; LHV-lower heating value.

	Ratio 2050 to 2035 Price	Ratio 2065 to 2050 Price	Extrapolate d Ratio 2070 to 2065 Price
Coal Delivered to Utilities	1.044	1.028	1.009
Wellhead Gas	1.210	1.173	1.058
Gas Delivered to Utilities	1.170	1.149	1.050
Crude Oil Price	1.159	1.085	1.028
Delivered Diesel	1.159	1.085	1.028
Average Electricity	0.994	1.010	1.003
Dry Biomass at Farmgate	1.010	1.005	1.002
Ethanol	1.010	1.005	1.002

References

DOE. 2011a. "Lower and Higher Heating Values of Hydrogen and Fuels," http://hydrogen.pnl.gov/filedownloads/hydrogen/datasheets/lower_and_higher_hea ting_values.xls, accessed March 2011. In Hydrogen Analysis Resource Center— *Hydrogen Data Book*, <u>http://hydrogen.pnl.gov/cocoon/morf/hydrogen/article/103</u>. Washington, DC: U.S. Department of Energy. DOE. 2011b. "Feedstock and Utility Assumptions,"

http://hydrogen.pnl.gov/filedownloads/hydrogen/datasheets/feedstock_and_utiity_p rice_projections.xls, accessed March 2011. In Hydrogen Analysis Resource Center—*Guidelines and Assumptions for DOE Hydrogen Program Analysis*, http://hydrogen.pnl.gov/cocoon/morf/hydrogen/article/505. Washington, DC: U.S. Department of Energy.

DOE. 2011c. *Biomass Program Multi-Year Program Plan*. Washington, DC: U.S. Department of Energy. <u>www.eere.energy.gov/biomass/pdfs/mypp_april_2011.pdf</u>, accessed April 2011.

EIA. 2005. *Annual Energy Outlook 2005 with Projections to 2025*. Report # DOE/EIA-0383(2005). Washington, DC: U.S. Energy Information Administration.

EIA. 2009. An Updated Annual Energy Outlook 2009 Reference Case Reflecting Provisions of the American Recovery and Reinvestment Act and Recent Changes in the Economic Outlook. Report # SR-OIAF/2009-03. Washington, DC: U.S. Energy Information Administration.

EIA. 2010. *Annual Energy Outlook 2010 with Projections to 2035*. Report # DOE/EIA-0383(2010). Washington, DC: U.S. Energy Information Administration.

Joint Global Change Research Institute. 2011. Global Change Assessment Model/GCAM (formerly MiniCAM). <u>www.globalchange.umd.edu/models/gcam</u>, accessed 2011.

Saur, G. 2011. Personal communication, March 2011. Golden, CO: National Renewable Energy Laboratory.

Appendix 3: Central Model Default Values and Assumptions

The following default values and assumptions apply to the H2A central model, unless a specific technology case specifies otherwise:

Analysis Methodology	Discounted cash flow (DCF) model that calculates a levelized hydrogen cost yielding a prescribed IRR	
Analysis Period	40 years	
Average Burdened Labor Rate for Staff	\$50/hour (2005 dollars)	
Capacity Factor	90% with case exceptions	
Central Storage	Optional buffer only as required for efficient operations	
CO ₂ Capture Credit	Not included in base cases (default value = 0)	
CO ₂ Production Taxes	Not included in base cases (default value = 0)	
Construction Period and Cash Flow	Varies per case	
Decommissioning	10% of initial capital, with case exceptions	
Depreciation Type and Schedule for Initial Depreciable Capital Cost	MACRS: 20 years with case exceptions	
Facility Life	40 years with case exceptions	
G&A Rate	20% of the staff labor costs above	
Hydrogen Pressure at Central Gate	300 psig; if higher pressure is inherent to the process, apply pumping power credit for pressure > 300 psig	
Income Taxes	21% federal; 6% state; 25.74% total	
Inflation Rate	1.9%, but with resultant price of hydrogen in reference year constant dollars	
Interest Rate on Debt	3.7%	
Land Cost	\$50,000/acre purchased (2005 dollars)	
O ₂ Credit	Not included in base cases	
Process Contingency	% adjustment to the total initial capital cost such that the result incorporates the mean or expected overall performance	

Project Contingency	% adjustment to the total initial capital cost such that the result represents the mean or expected cost value; periodic replacement capital includes project contingency
Property Taxes and Business Insurance	2%/year of the total initial capital cost
Reference Financial Structure	40% equity with 8% after-tax real IRR; 60% debt with 3.7% interest rate (outstanding debt is constant throughout project length) ¹
Reference Year Dollars	2016 (can be adjusted 1992–2016)
Sales Tax	Not included on basis that facilities and related purchases are wholesale and through a general contractor entity
Salvage Value	10% of initial capital, with case exceptions
Sensitivity Variables and Ranges	Based on applying best judgment of 5% and 90% confidence limit extremes to the most significant baseline cost and performance parameters
Technology Development Stage	All cost estimates are based on mature, commercial facilities
Working Capital Rate ²	15% of the annual change in total operating costs

¹ The default 8% real IRR value was derived from return-on-equity statistics (adjusted for inflation) for Praxair, Inc. and Air Products and Chemicals, Inc. during the period 2009–2017, which show a nominal return of approximately 10% (equivalent to an 8% real IRR) (Source: NREL, 2018, *Market Calibration of H2A Cost of Capital Parameters* [Internal Memo Report]). Because returns already account for corporate taxes, this value is an after-tax return. The use of the 8% real IRR is intended to reflect a steady-state situation in the future in which hydrogen is no longer a novel concept and a significant demand for hydrogen exists.

² Working capital is defined as a measure of a business' daily operating liquidity, calculated by subtracting current liabilities from current assets. Working capital is considered a part of operating capital, along with fixed assets such as facilities and equipment. It is also known as net working capital.

Appendix 4: Distributed Model Default Values and Assumptions

The following default values and assumptions apply to the H2A distributed model, unless a specific technology case specifies otherwise:

Analysis Methodology	Discounted cash flow (DCF) model that calculates a levelized hydrogen cost yielding a prescribed IRR
Analysis Period	20 years
Average Burdened Labor Rate for Staff	\$50/hour (2005 dollars) for production; \$12.06/hour (2007 dollars) for fueling station
Usage Factor	86%
Construction Period and Cash Flow	1 year
Decommissioning (% of depreciable capital investment)	10%
Depreciation Type and Schedule for Initial Depreciable Capital Cost	MACRS: 7 years
Facility Life	20 years with case exceptions
G&A Rate	20% of the staff labor costs above
Income Taxes	21% federal; 6% state; 25.74% total
Inflation Rate	1.9%, but with resultant price of hydrogen in reference year constant dollars
Interest Rate on Debt	3.7%
Land Cost	\$0.3/sqft/month for land rental
Process Contingency	% adjustment to the total initial capital cost such that the result incorporates the mean or expected overall performance
Project Contingency	% adjustment to the total initial capital cost such that the result represents the mean or expected cost value; periodic replacement capital includes project contingency
Property Taxes and Business Insurance	2%/year of the total initial capital cost
Reference Financial Structure	40% equity with 8% after-tax real IRR; 60% debt with 3.7% interest rate (outstanding debt is constant throughout project length) ³

³ The default 8% real IRR value was derived from return-on-equity statistics (adjusted for inflation) for Praxair, Inc. and Air Products and Chemicals, Inc. during the period 2009–2017, which show a nominal return of approximately 10%

Reference Year Dollars	2016 (can be adjusted 1992–2016)
Sales Tax	Not included on basis that facilities and related purchases are wholesale and through a general contractor entity
Salvage Value	10% of initial capital, with case exceptions
Sensitivity Variables and Ranges	Based on applying best judgment of 5% and 90% confidence limit extremes to the most significant baseline cost and performance parameters
Technology Development Stage	All cost estimates are based on mature, commercial facilities
Working Capital Rate ⁴	15% of the annual change in total operating costs

⁽equivalent to an 8% real IRR) (Source: NREL, 2018, *Market Calibration of H2A Cost of Capital Parameters* [Internal Memo Report]). Because returns already account for corporate taxes, this value is an after-tax return. The use of the 8% real IRR is intended to reflect a steady-state situation in the future in which hydrogen is no longer a novel concept and a significant demand for hydrogen exists.

⁴ Working capital is defined as a measure of a business' daily operating liquidity, calculated by subtracting current liabilities from current assets. Working capital is considered a part of operating capital, along with fixed assets such as facilities and equipment. It is also known as net working capital.