Hydro-Québec Research Institute (IREQ) Simulation and Distribution Testing Facilities

Richard Gagnon, Pierre Giroux
IREQ

First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains
June 14th, 2013 Boulder, CO, USA
Contents

> Video: Hydro-Québec is ...

> Hydro-Québec Power System Simulation Activities

> IREQ’s Distribution Test Line

> Ideas of some R&D Avenues in an Open Innovation Perspective
Hydro-Québec’s Power System:
Major Generating and Transmission Facilities

- Hydro-Québec generates, transmits and distributes electricity, mainly using renewable energy sources, in particular hydroelectricity.

- Installed capacity: 36 000 MW

- 15 interconnections with systems in neighboring provinces and states.

- By 2015, HQ will be carrying about 4 000 MW of wind power over the transmission system.
Hydro-Québec Power System Simulation Activities

> Hardware-in-the-Loop (HIL) testing of controllers for HVDC, FACTS (SVC, UPFC, ...) and protection relays

> Developing power equipment models (FACTS, Wind Generators, ...)
 - Detailed 3-phase Electromagnetic Transient (EMT) models
 - Phasor models for Stability Studies

> Developing simulation tools: HyperSim Real-Time Simulator, Matlab/SimPowerSystems and EMTP-RV
IREQ’s Power System Simulator

Mid-2012

Today
IREQ’s Power System Simulator
2 * 500 MW Back-to-Back HVDC
Québec – USA Interconnection
HyperSim Digital Simulator

> **Software**
- Based on nodal method (EMTP)
- Graphical user interface
- Automatic testing environment
- Interface to MATLAB Real-Time Workshop

> **Hardware**
- SGI multiprocessor computer
- Fast input/output modules for HIL testing of real controllers

> **Applications:**
- HIL testing of real controllers
- Studies of very large power grid in Off-line mode (like a very fast EMTP simulation)
Applications: Examples

> **Protection system testing:**
 - HQ-TransÉnergie et HQ-Production have their own HyperSim facilities.
 - Also in HQ substations for maintenance and training.

> **HVDC Testing**
 - Outaouais HVDC Interconnection, (Quebec-Ontario)
 - Châteauguay HVDC Interconnection (Quebec-USA)
 - LG2-Nicolet-Boston Multi-terminal HVDC
 - Champlain-Hudson Power Express Interconnection (?)

> **Wind turbines and Wind Power Plants (WPP)**
 - Model Validation
 - Ability to Simulate “Black Box” Manufacturer’s Models
 - Large-Scale Integration Studies (Real-time or Off-line)
Example of a Large-Scale Integration Studies (Real-Time)

HVDC Interconnection

Gaspé Peninsula

New England

Hydro–Québec Network

780 bus
189 lines
25 WPPs (DFIG single-machine eq.)
35 synch. generators
7 SVC
6 synch. Condensers
Series compensation
1 Multi-Terminal HVDC interconnection
CASIR:
IREQ’s High Performance Computing Data Center

- 84 TFlops of x86 processing
- 21 TFlops of GPU processing
- 4124 CPU cores (x86)
- 16 TB of distributed RAM
- 120 TB GPFS parallel file system
- QDR/FDR (40/50 Gbps) Infiniband network
- A team of 3 scientists specialized in HPC
IREQ’s Distribution Test Line
Distribution Test Line

- **Conducteur de Distribution Test Line**
- **Ligne souterrain 25 kV / 120 kV**
- **Δ-Ү 28 MVA**
- **Charges B1**
- **Conducteur de neutre 600 V / 25 kV**
- **3-167 kVA X**
- **X1, X2, X3**
- **CED/ DMS**
- **S4, S5**
- **Ligne 4**
- **Centre de commande**
- **Charges**
- **Génération**
- **Microréseau**
- **Groupe – Technologie**

Five technology areas:

- Advanced Protection & Microgrid Controller
- Distributed Energy Ressources (DER)
- Underground Infrastructure
- Metering & Telecommunications
- Distribution Management System (DMS)
Distribution Test Line - Details of DER

> **Synchronous generators**
 - 400 kVA diesel, Caterpillar engine

> **Induction generator**
 - 200 kVA dc motor driven Baldor IM

> **Inverters**
 - 250 kVA SMA PV inverter, dc supply fed
 - 135 kVA Satcon inverter, solar concentrator fed
 - 250 kVA BESS converter with 100 kWh Li-ion FePO4 batteries

> **Controllable RLC load - this could incorporate some interruptible component**
Ideas of some R&D Avenues in an Open Innovation Perspective

- More Real-Time Performance
 (very demanding power electronics applications, very large grid simulation…)

- More interoperability between simulation tools
 (Common Models, Human Interface, …)

- Multi-Domain Simulation
 (Phasor – EMT, Telecommunications, Thermal, Magnetic …)

- Manufacturer Virtual Controller
 (“black box concept”, …)

- RT - Grid Power Simulator
 (Characterization of wind turbine, storage systems, electric car, …)
Up to now it’s just a concept, but …
RT – Grid Power Simulator for Testing and Integrating of Wind Turbines

> Model validation and performance validation for:
 - Low Voltage Ride Through
 - High Voltage Ride Through
 - Inertia Emulation
 - Subsynchronous Resonances
 - Subsynchronous Control Interactions (series compensation and HVDC)
 - Connection to Weak AC system

> Development and Validation of Advanced Protection Systems in Distribution Network

> Development and Validation of Advanced Controllers for Wind-Diesel-Storage Systems in Isolated Network