Power Electronic Grid Simulator
Platform of drives and power quality products for wind-turbine testing

Ester Guidi, Pieder Jörg, ABB Medium Voltage Drives, Switzerland
Outline

- Teststand applications for drives and power electronics
 - Modular drives and power-electronics platform ACS6000
 - Power electronic grid simulator based on platform
 - Design considerations following windturbine testing requirements
Teststand applications for drives and power electronics

Test stand applications

single-drive

motoring OR generating

multi-drive

motoring AND generating

Device under test
Teststand applications for drives and power electronics

Test stand applications

single-drive

motored device testing

fixed installation

Device under test
ABB’s areas of activity

Test stand applications

<table>
<thead>
<tr>
<th>Single drive</th>
<th>Multi drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device testing</td>
<td>Gearbox</td>
</tr>
<tr>
<td>- Compressor & turbo charger</td>
<td>- Electrical generator</td>
</tr>
<tr>
<td>- Pump</td>
<td>- Electrical motor</td>
</tr>
<tr>
<td>- Balancing plant</td>
<td>- Grid simulation</td>
</tr>
<tr>
<td>- Jet engine</td>
<td>- Wind turbine</td>
</tr>
<tr>
<td>- Gas Turbines</td>
<td>- …</td>
</tr>
<tr>
<td>- Motor Generator set, …</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fix installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Wind tunnel</td>
</tr>
<tr>
<td>- Human centrifuge (pilot training)</td>
</tr>
<tr>
<td>- Soft starters for high energy labs</td>
</tr>
</tbody>
</table>
Teststand applications
Typical requirements towards electrics/automation

- High dynamic electric motor control over wide speed range
 - capability to control induction and synchronous motors
 - base speed of electrical motor:
 1Hz .. 75Hz / few rpm .. 3600rpm
 - wide field-weakening range (… 1:5)
 - high torque over-loadability (… 275%)
 - air-gap-torque control bandwidth (… 400Hz)
 - flexible automation integration (PLC, FB, fast I/O …)
- Versatile power electronic building blocks
 - load-cycling capable (reliability)
 - parallelable and multi-terminal capable (scalability)
Outline

- Teststand applications for drives and power electronics
 - Modular drives and power-electronics platform ACS6000
- Power electronic grid simulator based on platform
- Design considerations following windturbine testing requirements
ACS 6000
Modular drives and power-electronics platform

- Voltage range
 - 2.3…3.3 kV

- Power range
 - 3…27 MVA continuous and 36 MVA short term

- Output frequency range
 - 0…75 Hz (higher on request)

- Field weakening point
 - 3.125…75 Hz (lower / higher on request)

- Field weakening range
 - 1:5
ACS 6000 focus: Demanding applications

- Cement, Mining & Minerals
- Marine
- Metals
- Chemical, Oil & Gas
- Power
- Water
- Pulp & Paper
- Special applications, e.g. wind tunnels
ACS 6000: Some building blocks

Inverter Unit

Active Rectifier

Pre-defined interfaces for power, cooling & control connections

Capacitor Bank

Diode Rectifier

Water Cooling

INU 5 – 9MVA

ARU 5 – 9MVA

INU 1 – 5MVA

AC

DC

M

AC

DC

M
ACS 6000 water cooled
3 – 36 MW

Terminal and Control Unit
Contains the power terminals and the control swing frame

Capacitor Bank Unit
DC capacitors for smoothing the intermediate DC voltage

Active Rectifier Unit (ARU)
Self-commutated, 6-pulse, 3-level voltage source inverter with IGCT technology

Inverter Unit
Self-commutated, 6-pulse, 3-level voltage source inverter with IGCT technology

Water Cooling Unit
Supplies the closed cooling system with deionized water for the main power components
Inverter topology

- 3-level voltage source inverter
- IGCT technology for maximal loadability in combination with minimal part count
- Fuseless design, ACS 6000 uses IGCTs for fast and reliable protection of power components instead of unreliable medium voltage power fuses
Common DC bus

- Several motors (induction and synchronous) can be connected to the same DC bus → optimized energy flow
 - Braking energy generated in one motor can be transferred to other inverters via common DC bus without power consumption from supply network
 - Optimum configuration can be reached by combining different inverter and rectifier modules within one drive
Parallel connection of inverter units:

9, 18, 27, 36MVA as standard

e.g. 9MVA unit
ACS 6000: Flexible solutions from 2Q single ...

Recomendation:
- min. 100 mm for conventional air circulation
- min. 500 mm for better service availability

INU 5 MVA

ACS 6105_L12_1a5
ACS 6000: ... to 4Q multi drive

ACM 6209_A12_1s9_1s9_1s9
Outline

- Teststand applications for drives and power electronics
- Modular drives and power-electronics platform ACS6000
 - Power electronic grid simulator based on platform
- Design considerations following windturbine testing requirements
Main benefit: Enables tests to be carried out off-line in a cost- and time-efficient manner

Flexibility: suitable for any kind of electrical equipment that needs to be connected to the grid

- Wind and Tidal Turbines
- PV systems
- Solar power
- Fuel cells
- Motor Gensets
- Energy storage systems
ACS 6000 grid simulator
Combined functionality
Project example – test stand for wind turbine
Combined functionality drive train and grid simulator

Integrated all in one line-up based on ACS6000 platform
ACS 6000 grid simulator
Example of a layout and dimensions
ACS 6000 grid simulator
Layout possibilities

- U-shape, L-shape, ...
Outline

- Teststand applications for drives and power electronics
- Modular drives and power-electronics platform ACS6000
- Power electronic grid simulator based on platform
- Design considerations following wind turbine testing requirements
ACS 6000 based grid simulator
Control and transformer engineered to application

- Grid simulator inverter control and the output transformer are dedicated ("engineered") for the grid simulator application
- Everything else is "off the shelf"
 - Power electronic hardware
 - Hardware protection
 - Mechanical design and cooling
 - Supervisory control and sequencing
 - Supply from public grid
 - ...
ACS 6000 grid simulator
Control hardware overview
ACS 6000 grid simulator
Control hardware features

- **Main controller - PP D113**
 - 36 Optical fiber modules (25us)
 - DDCS (DriveBus Comm)
 - Communication to the upper control via Anybus-Modules or CEX
 - Profibus-DPV1 Master
 - CANopen Slave
 - ControlNet Slave
 - DeviceNet Slave
 - Modbus-RTU S, -TCP S
 - Profibus-DP S, -DPV1 S, EtherCAT S
 - Profinet RTI - IO

- **Fast IO – UA D149**
 - PowerLink (native protocol – 25 us)
 - 32 DI (24V)
 - 16 DO (24V)
 - 12 AI (±10V, ±20mA)
 - Isolated in groups of 3
 - 4 isolated AO (±10V, ±20mA)
ACS 6000 grid simulator
Functional diagram

ACS6000
- ARU
 - DC link control
 - NP balancing
- INU AMC
 - Main state machine
 - Protection
 - RBU control
 - Site control (WCU, etc)

INU INT
- Switching logic & state machine
- Interlock control

Supervisor
- V reference generation – dq
- Tester configuration - parameters

PEC800
- Simulink
 - Communication with supervisor
 - State machine aligned to AMC
 - OPP configuration

- FPGA
 - 4x Modulator (OPP/PWM/…)
 - ASE control
 - Interlocking
 - Zero vector/phase disabling
 - Switching control / clamp interlocking
Overview: Configurations of matching transformer

What is the function of the transformer

- Match the converter voltage to the desired testbus-voltage
- Sum-up the power (resp. currents) of the different inverters, e.g. of 4 inverters
- Cancel inverter harmonics to improve THDv
- Provide galvanic insulation between DUT and simulator for simpler test-design and protection
Overview: Configurations of matching transformer
What works and what not

- What doesn't work
 - 3 winding transformer („12-pulse“) → circulating currents
 - Parallel transformers → circulating currents

- What basically works
 - Series connection of HV winding for summing up
 - Y configuration of LV winding with starpoint to NP
 - Delta configuration of LV winding
 - 3 single phase trafos with H-bridge driven LV winding
Overview: Configurations of matching transformer

HV side configuration: Series connection

- Series connection allows summation of voltages with cancellation of harmonic voltages
- This turns the separate inverter units into a multi-level/multi-cell converter
- Tapings are relatively easy to implement
- The star-point is accessible and can be freely treated (hard grounded, soft-grounded)
What you get as result
3 independent floating voltage sources

- Lab setup option 1

- Lab setup option 2

- or any other configuration of 1, 2 or 3 sources
How does the voltage source look like
Potential and achievable short-circuit power

inverter is ideal voltage source with no internal impedance
it can run up to a maximum current

transformer leakage inductance is visible grid impedance during normal operation
minimum is ~5% of rated transformer power

maximum is installed power electronic power

e.g.
3.15kV_{AC,LL} / 2000A
11MVA per unit
44MVA for 4 units

e.g.
16MW cont. rating
5% \rightarrow 320MVA
short-circuit power

e.g.
converter will limit short-circuit at 44MVA
ABB builds the grid simulators on a platform, which is widely used in demanding industrial applications.

The grid simulator is enabled by an application specific control hardware and software, and a dedicated matching transformer.

Compatibility with drives allows setups which include the dynamometer on the same DC-bus, thus isolating it from the local lab supply grid.

The used hardware and its configurations have been (partly widely) used since the launch of ACS 6000 in 1998.

- Dynamometer: High-power rolling-mill drive, direct drive mine-hoist
- Grid simulator: Static VAR compensator, grid-interties (16 2/3 Hz <-> 50Hz) and for large energy storage.
Power and productivity for a better world™