

GRID SIMULATOR TESTING OF WTG

Carlos Garcia de Cortazar

1st International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains - Boulder, June 13, 2013

índice

- 1. LEA Wind Turbine Test Laboratory
- BEG Electrical Generator Test Bench
- 3. 5 MW in a Grid Simulator Experience

Wind Turbine Test Facility

Overview

LEA – WTG Test Laboratory

- Complements the research work of CENER in wind energy Dedicated to Tests of components, subsystems & full systems
- Activities
 - Blade tests
 - Experimental Windfarm
 - Power Train tests and Electrical Testing

BLADE TEST PLANT

1. LEA – WTG Test Laboratory

BLADE TEST PLANT Capabilities

1. LEA – WTG Test Laboratory

Perform structural tests on WTG blades							
☐ IEC TS-61400-23 standard / GL Guidelines							
□ Static/Fatigue							
☐ Up to 75 m blade full length							
Sections of up to 100m blades							
Static Tests							
Mass, COG, moments of inertia							
□ Stiffness bending/torsion							
Ultimate strength							
Fatigue Tests							
Modal analysis							
☐ Endurance/fatigue							
☐ Biaxial + Multipoint (UREX, GREX)							

EXPERIMENTAL WINDPARK

2. CENER LEA – WTG TEST LABORATORY

EXPERIMENTAL WINDPARK

2. CENER LEA – WTG TEST LABORATORY

- 6 calibrated positions
 - WTG prototypes for up to 30 MW evacuation capacity
 - Field tests on complex terrain (Wind Classes IA, IIA)
 - Fully CFD Characterised
- Wind Park features
 - 120 m high Met Masts instrumented at 5 different heights & Lidar
 - Field Offices & Redundant communications
 - Substation 20KV/66KV
- Technical Services
 - IEC Certification tests (Power Curve, Noise, PQ, Mechanical Loads)
 - Verification of response to voltage dips (LVRT)
 - Others (design, optimization, validation, etc.)
- Energy Production Income RD661/2007

POWER TRAIN Facilities

3. LEA – WTG Test Laboratory

TEST BENCHES Configuration

3. CENER LEA – WTG TEST LABORATORY

CENTRO NACIONAL DE ENERGÍAS RENOVABLES

TEST BENCHES Capabilities

3. LEA – WTG Test Laboratory

S Power Train test bench

- ☐ Test of WTG power train up to 8MW
- ☐ Functional tests on mechanical parts
- ☐ Functional/load test of brake/coupling at high speed shaft HSS
- □ Concentrated life test and HALT
 - bearings in the main shaft (LSS)
 - gears and bearings in the gearbox

Generator test bench

- > Functional test of generator and power electronics
- Electrical transient simulation (voltage dips)
- > Functional tests, vibration, acoustic noise, heating, etc.
- Overspeed tests and transients surges

TEST BENCHES Capabilities

3. LEA – WTG Test Laboratory

Nacelle test bench

functional,	, emergency	stop,	overs	beed, (climatic	conditions,	etc.

- □ electrical transient simulation "Voltage dips"
- ☐ EMC and acoustic test
- ☐ Reactive power measurements

Nacelle assembly bench

- WTG erection and nacelle setup procedures
- Use of auxiliary assembly cranes
- Simulation of maintenance exercises, including major corrections
- Staff training in the assembly and maintenance of WTG
- Training in evacuation and security operations in WTG

BEG

Electrical Generator Test Bench Overview

BEG

2. Electrical Generator Test Bench

Adavantages

- ☐ Not depending on Wind conditions: maximum productivity
- □ Development laboratory conditions: measurement devices, communication, working conditions, etc.
- ☐ Easily different working points reproducibility

Disadvantages

- High frequency wind and mechanical forces not considered
- On the field certification still required

Grid Simulator Test Experience

3. Hardware involved equipments

Grid Simulator Test Experience

3. Electrical Configuration

Grid Simulator Test Experience

2. Conclussions

Proposal for Discussion

☐ Laboratory Tests accepted for certification

☐ Bidirectional influence in Grid Simulator Tests

