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Talk Outline 

■ Introduction and Motivations 

■ Traditional AC-OPF 

■ Power Systems Diferential-Algebraic Equation Model 

■ No-OPF OPF 

■ Numerical Case Studies 

■ Concluding Remarks 
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Intro, Literature, and Research Objectives 

Control Layers in Power Systems 

Figure: System frequency response and control layers in power system 

Primary control regulates frequency dynamics and contains AVR and PSS etc. 

Secondary control layer removes steady-state error via AGC 

Tertiary control is used for economic dispatch via running AC-OPF 
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Intro, Literature, and Research Objectives 

Summary of AC-OPF 

AC-OPF can be defned as computing cost-optimal generators setpoints while 
satisfying key system constraints 

OPF: minimize f(x) s.t. g(x) ≤ 0 h(x) = 0 

x defnes many variables 

f(x) represents the total cost of generation from fuel-based power plants 

g(x) lumps inequality constraints such as thermal line, voltages, and 
generation limits 

h(x) denotes the system power balance equation—a nonlinear non-convex 
constraint 

Most solved engineering optimization problem? 
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Intro, Literature, and Research Objectives 

Literature 

To solve the AC-OPF, academics often resort to one of these four approaches 

Assume DC power fow and eliminate some variables, resulting in convex 
quadratic programs [Taylor (2015); Momoh et al. (1999)] 

Derive SDP relaxations of OPF appended with methods to recover an 
optimal solution [Andersen et al. (2014); Louca et al. (2013).] 

Design global optimization methods with some performance guarantees under 
various relaxations of nonconvex OPF [Lu et al. (2018); Lee et al. (2020)] 

Obtain machine learning-based algorithms that learn solutions to OPF [Baker 
(2019); Huang et al. (2022)] 
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Intro, Literature, and Research Objectives 

Literature (Cont’d) 

AC-OPF generator setpoints are control- and dynamics-unaware 

The provided setpoints might not even be cost-optimal anymore 

...due to future power grid with high uncertainty and fuctuations 

Need for realtime and dynamics-constrained AC-OPF 

...that goes beyond markets and cares more for stability 

This is not new, lots of studies to augment OPF with dynamics 
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Real-Time Optimal Power Flow [Yan and Xu (2020); Tang et al. (2017)]

Approaches where dynamic stability or optimal control metrics are appended
to the OPF [Bazrafshan et al. (2019); Li et al. (2016); Dorfer et al. (2016)]

Most of the literature solve AC-OPF or its derivatives, approximations, or
restrictions + dynamic constraints

Research objectives:

– Completely ignore solving AC-OPF and dump AC-OPF in secondary control

– Jointly approximate AC-OPF solution while performing frequency regulation
and realtime control

– No more AC-OPF centered optimization

– Move problem to control theory

– Still satisfy nonconvex OPF constraints

Intro, Literature, and Research Objectives 

Relevant Work and Research Objectives 
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Part 1: 
AC-OPF Formulation 



JOPF(PG) =
X
i∈G

aiPGi
2 + biPGi + ci| {z }

Generators cost

subject to

PGi + PRi + PLi =

vi
P

j vj(Gij cos θij +Bij sin θij)

QGi +QRi +QLi =

vi
P

j vj (Gij sin θij −Bij cos θij)


Power balance
equations

Pmin
Gi ≤ PGi ≤ Pmax

Gi

Qmin
Gi ≤ QGi ≤ Qmax

Gi

)
Generator power
limits

vmin
i ≤ vi ≤ vmax

i Voltage limits

Sfi ≤ Fmax

Sti ≤ Fmax

)
Line fow limits
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AC-OPF: A Nonconvex Optimization Problem 

minimize 
P G,QG ,θ,v| {z } 

variables 
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Part 1 AC OPF Formulation 

AC-OPF (Cont’d) 

The AC-OPF is usually solved every 5–10 minutes, although the frequency at 
which its solved depends on various factors 

Ideally, a system operator would have all of the constraints satisfed at each 
time step t, and one would solve a realtime AC-OPF 

...as realtime predictions of loads/renewables become available 

Does not take into account the power system diferential equations and 
uncertainties vector w (loads/renewables) 
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Part 2: 
Dynamic-Algebraic Power 

System Modeling 



Part 2 Dynamic Algebraic Model 

Diferential Equations of Multi-Machine Power systems 

System’s set-up: 
N number of buses 
Modeled as (N , E) where N = {1, . . . , N} and E ⊆ N ×N 
N = G ∪ L ∪R 
NM ⊆ N → buses with PMUs 

System dynamics (i ∈ G ∪R ∪ L): 

δ̇ i = · · · 
ω̇ i = · · · 

Ė ′ = · · · qi 

. . . 

System dynamics can contain higher-order generator dynamics along with 
power-electronics-based solar, wind, and load dynamical models 

Framework accomodates a lot more variations 
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Part 2 Dynamic Algebraic Model 

Algebraic Equations of Multi-Machine Power Systems 

Generator real and reactive power equations 

1 di 2PGi = Eqi 
′ vi sin(δi − θi) − xqi −x ′ 

vi sin(2(δi − θi))′ ′ x 2x xqidi di 

1 E ′ di+xqi 2QGi = qivi cos(δi − θi) − x ′ 

v′ ′ x 2x xqi i 
di di 

′ 

− xqi−xdi 2 vi cos(2(δi − θi))′ 2x xqidi 

Power balance equations X 
PGi + PRi − PLi = vivj (Gij cos θij +Bij sin θij ) 

jX 
QGi + QRi − QLi = vivj (Gij sin θij −Bij cos θij ) 

j 

Power balance equations can be written as current balance equations 
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Part 2 Dynamic Algebraic Model 

Power System State Space Representation 

Power systems NDAE model can be written as: 

nonlinear generator ODEs ẋ d = Adxd + fd (xd, xa) + Bdu 

nonlinear power fow 0 = Aaxa + f (xd, xa) + Bawa 

xd lumps dynamics states of generator, renewables, and loads 

xa defnes algebraic power network states: P G, QG, v, θ 

u lumps all the control inputs for both generators and renewables 

Lump xd and xa into x 

⇒ dynamics can be written as nonlinear diferential algberaic equation (NDAE): 

Eẋ = Ax + f (x) + Bu + Bww 
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Part 3: 
Feedback Controller Design 
and NO-OPF Formulation 



Part 3 NO-OPF OPF 

No-OPF Control Formulation 

First, let us assume we have realtime information of x(t) 

And let’s consider a control law as 

u(t) = u0 + K (x(t) − x0) 

where 

– u0 is the reference input; such as setpoints of feld voltage Efd and governor 
T r in case of 4th-order system 

– x0 is the steady state value of the state vector 

K is a design variable 
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Part 3 NO-OPF OPF 

No-OPF (Cont’d) 

Now let us write the perturbed closed loop dynamics as: 

Eẋ = (A + BK)x + f(x)+Bww 

z = (C + DK)x 

z(t) is the performance index—can model costs or frequency violations 

The main objective is to design control gain matrix K which can hedge 
against disturbance w and make system stable 

To consider disturbance w in the controller architecture one can use the 
robust H2, H∞ or L∞ stability notion 

Ahmad Taha, ahmad.taha@vanderbilt.edu Vanderbilt University September 5, 2023 17 / 35 

mailto:ahmad.taha@vanderbilt.edu


Part 3 NO-OPF OPF 

H∞ Notion and WAC Design 

Design K such that ∥z∥ < γ∥w∥ with γ as performance index 

Doing so the controller minimizes the impact of disturbance w 

Thus the controller will stabilize the system at the post-fault equilibrium 

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

(a) (b) 

Figure: (a) Stabilization of power system at post-fault equilibrium (b) Visualization of 
H∞ notion 
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Part 3 NO-OPF OPF 

Relation to the AC-OPF Formulation 

Compute K such that it explicitly encodes the algebraic constraints along 
with diferential equations 

Then K will inherently satisfy key AC-OPF constraints 

The constraints related to generators’ capacity limits can be encoded via 
saturation dynamics in the diferential equations 

Other constraints such as thermal limits of lines cannot be modeled in this 
approach 

How to compute K? Theoretical properties? 
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1 yields power system model that is H∞ stable with performance level γ

2 ensures system is asymptotically stable after a large disturbance

3 computed gain matrix K is fully dense

4 designed SDP is a convex semi-defnite optimization problem

Part 3 NO-OPF OPF 

Centralized K that Satisfy Key AC-OPF Constraints 

Main Result 

Given any unknown disturbance w(t), solving the following optimization problem 

(Centeralized Control-OPF) minimize 
K,γ 

γ 

subject to LMI(K, γ) > 0 

K ∈ K 
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Part 3 NO-OPF OPF 

Integrated Framework 
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Part 3 NO-OPF OPF 

Discussion on the Control-OPF Formulation 

Regardless of the computation technique used (i.e., centralized or 
decentralized) the gain K is computed ofine and only depends on the 
constant system matrices 

Fully abides by some of the key AC-OPF constraints 

Can be implemented in realtime using measurements received from the PMUs 

Can seemingly integrate the detailed dynamics of the generator and 
renewables 

Deals with the uncertainty in renewables, loads, and parameters in a 
control-theoretic way 

Robust to some topological changes 

Not dependent on a linearization point 
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Part 3 NO-OPF OPF 

Remarks Regarding Control-OPF 

Does not provide any theoretical guarantees regarding optimally of the 
system cost after a large disturbance 

Does not explicitly account for the other AC-OPF constraints but only the 
power/current balance equations 

Requires knowledge of system matrices, although feedback controllers are 
known to be robust against small parametric uncertainty in the system 
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Part 4: 
Numerical Case Studies 



Part 4 Case Studies and Summary 

Case Studies 

Various numerical simulations performed under random disturbances in load 
and renewables 

Since control-OPF provides time-varying vectors of P G and QG, average 
system cost is computed as: 

T
1 XX 

aiP 2JOPF(P G) = Gi(t) + biP Gi(t) + ci
T 

t=1 i∈G 

This seems to be the fair way of comparing costs 
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Part 4 Case Studies and Summary 

AC-OPF and control-OPF Power Set-points 
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Figure: Time-varying power set-points by control-OPF and static set-points from 
AC-OPF for three random step disturbances in load demand; case 39 (above) and case 9 
(below) 
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Power, Voltages, Line Flows and their Limits 
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Figure: Active and reactive power generated by the all the generators and their respective 
limits, line fows and their maximum rating, and the overall modulus of all bus voltages 
for case 9 bus test system. 
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System Cost Comparison 

Table: Cost comparison for the control-OPF and AC-OPF. 

System Method 
Total system 
cost ×103 $ 

Percentage diference 
from AC-OPF 

Case 9 
AC-OPF 

control-OPF 
5.4188 
5.5805 

— 
3.001 

Case 14 
AC-OPF 

control-OPF 
8.4591 
9.3522 

— 
14.251 

Case 39 
AC-OPF 

control-OPF 
41.819 
46.105 

— 
10.243 

Case 57 
AC-OPF 

control-OPF 
42.791 
48.002 

— 
10.894 
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Constraints Violations? 

Table: Summary of AC-OPF constraints for diferent test system with control-OPF. The 
results indicate no constraint violations for fows, maximum active/reactive powers. 

Test System ∆maxSf (t) ∆maxSt ∆maxP g (t) ∆minQ (t)g ∆maxQ (t)g

Case 9 -0.5612 -0.4570 -1.0626 3.2456 -1.1414 
Case 14 -0.4297 -0.3910 -0.6606 0.4726 -0.0046 
Case 39 -0.6762 -0.6675 -0.0778 3.1338 -0.0464 
Case 57 -0.2391 -0.8312 -0.0014 2.0121 -0.0396 

where 

∆maxX(t) = maxt(X(t) − Xmax) 

∆minX(t) = maxt(X(t) − Xmin) 
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Frequencies under Load and Renewable Uncertainty 
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Figure: Generator frequencies under ten random disturbances in load and renewables for 
case 9, case 14, case 39, and case 57 test systems respectively. 
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Comparison with LQR Control 
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Figure: The generator frequencies for 9-bus (top-left), 14-bus (top-right), 39-bus 
(bottom-left), and 57-bus (bottom-right) test systems, for disturbance in load demand 
and renewable power. 
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cost(Control-OPF) > cost(AC-OPF)

Control-OPF results in no constraint violations of fows, limits, ...

Control-OPF produces realtime regulation of grid’s voltages + frequencies

One could consider the 2–15% increase in the system cost as a regulation cost

Comparisons are somewhat unfair to Control-OPF. Why?

AC-OPF knows exact values for all uncertain loads and renewables, the
control-OPF is truly uncertainty-unaware

SDPs are slow but it’s an ofine computation

No need for multi-period OPF

No need for stochastic OPF or robust OPF

New concept of realtime pricing (LMPs extracted from ODEs)
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Concluding Remarks 
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Moving Forward 

How would this be applied to more detailed models with renewables? 

Can make this apporoach PMU-based 

Include an estimator in the feedback loop 

Compare with robust optimization approaches 

Embed generation cost curves within the robust control 
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Thank You! 
Please email me for questions/discussions 

ahmad.taha@vanderbilt.edu 
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