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Control Systems 101 

Prototypical feedback control problem is tracking and disturbance 
rejection in the presence of model uncertainty 

w 

PlantController 
r e 
− 

How is the reference r being determined? 

u y 
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Feedforward Optimization of Large-Scale Systems 

r1 r2 rn 

minimize 
z,r 

f (z) + g(r) 

subject to (z , r) ∈ C(model, pred.) 
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Feedback Optimization of Large-Scale Systems 
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Optimal Steady-State Control Problem Statement 

Given: 
1 a dynamic system model with 

a class of external disturbances w(t) 
a model uncertainty specification (e.g., parametric) 

2 a vector of outputs y ∈ Rp of system to be optimized 
3 an optimization problem in y 

Design, if possible, a feedback controller such that 

1 closed-loop is (robustly) well-posed and internally stable 
2 the regulated output tracks its optimal value 

lim 
t→∞ 

y(t) − y ?(t) = 0 , ∀disturb, ∀ uncertainties 
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LTI-Convex OSS Control: Setup Overview 

1 Uncertain (possibly unstable) LTI dynamics 

ẋ = A(δ)x + B(δ)u + Bw (δ)w 

ym = Cm(δ)x + Dm(δ) + Qm(δ)w 

y = C (δ)x + D(δ)u + Q(δ)w 

δ = parametric uncertainty, w = const. disturbances 

ym = system measurements available for feedback 

y = system states/inputs to be optimized 

a steady-state convex optimization problem 2 

y ?(w , δ) = argmin {f (y , w) : y ∈ C(w , δ)}
y∈Rp 
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LTI-Convex OSS Control: Setup I 

0 = A(δ)x̄ + B(δ)ū + Bw (δ)w 
Forced equilibria (x̄ , ū, ȳ) satisfy 

ȳ = C (δ)x̄ + D(δ)ū + Q(δ)w 

This defines an affine set of achievable steady-state outputs 

Y (w , δ) = (offset vector) + V (δ) 

Note: Due to 

selection of variables y ∈ Rp to be optimized, and/or 

structure of state-space matrices (A, B, C , D) 

1 

2 

it may be that Y (w , δ) ⊂ Rp 

constraint ȳ ∈ Y (w , δ) cannot be ignored!! 
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LTI-Convex OSS Control: Setup II 
Desired regulated output y?(w , δ) solution to 

minimize 
y∈Rp 

f0(y , w) (convex cost) 

subject to y ∈ Y (w , δ) (equilibrium) 

Hy = Lw (engineering equality) 

Jy ≤ Mw (engineering inequality) 

Equilibrium constraints ensure compatibility between the 
plant and the optimization problem 

=⇒ guarantees a steady-state exists s.t. y = y?(w , δ). 

We want to track optimal output y?(w , δ) 
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Optimality Models for OSS Control 

An optimality model filters the available measurements to robustly 
produce a proxy error � for the true tracking error e = y?(w , δ) − y 

w 

u ym � 

ξ = OM state 
Plant Optimality Model 

Steady-state requirement: if the plant and optimality model 
are both in equilibrium and � = 0, then y = y?(w , δ). 

Driving � to zero (+ internal stability) drives y to y? 
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Big Picture for OSS Control 
Optimality model reduces OSS control to output regulation 

Plant 
Optimality 
Model 

Stabilizing 
Controller 

Integral 
Control 

ymu 

w 

η 

� 
ξ 

uom 

Optimality Model: creates proxy error signal � 

Integral Control: integrates � 

Stabilizing Controller: stabilizes closed-loop system 
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Optimality Model Details I 

Can we implement an optimality model that is robust against δ? 

minimize 
y ∈Rp 

f0(y , w) 

subject to y ∈ Y (w , δ) = (offset) + V (δ) 

Hy = Lw 

Jy ≤ Mw 

Optimality condition: 

? rf0(y , w) + JTν? ⊥ (V (δ) ∩ null(H)) 

possibly depends on uncertain parameter δ. 
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Optimality Model Details II 
When can an optimality model encode the gradient KKT condition? 

? rf0(y , w) + JTν? ⊥ (V (δ) ∩ null(H)) 

Robust Feasible Subspace Property 

V (δ) ∩ null(H) is independent of δ 

V (δ1) 
V (δ2) 

null(H) 
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Optimality Model Details III 
If Robust Feasible Subspace property holds, then 

ν̇ = ϕ(ν, Jy − Mw) � � 
Hy − Lw 

� = 
T0 
T(rf0(y , w) + JTν) 

range(T0)

= V(δ) ∩ null(H)

(Design freedom!) 

is an optimality model for the LTI-Convex OSS Control Problem. 

Comments: 
1 T0

Tz extracts component of z in subspace V(δ) ∩ null(H): 

�2 = 0 ⇐⇒ rf0(y , w) + JTν ⊥ V (δ) ∩ null(H) 

2 Flexibility: different equivalent formulations of optimization problem 
yield different optimality models 
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What happens if RFS does not hold? 

14 / 27 



Stabilizer Details I 
Can we actually stabilize this thing? 

Goal: stabilize cascade of plant → optimality model → integrators 1 

Plant 
Optimality 
Model 

Integral 
Control 

Stabilizing 
Controller 

w 

ym � 

η 

2 

3 

Can prove closed-loop stable =⇒ OSS control problem solved 
For QP OSS control, can prove cascade is stabilizable iff 

plant stabilizable/detectable 
optimization problem has a unique solution 
engineering constraints not redundant with equilibrium constraints 
T0 has full column rank 
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Stabilizer Details II 
Optimality model contains monotone nonlinearity rf0(y) . . . 

Plant 
Optimality 
Model 

Stabilizing 
Controller 

Integral 
Control 

ymu 

w 

η 

� 
ξ 

uom 

In theory: full-order robustly stabilizing controller design 

In practice: low-gain integral control u = −K η if open-loop stable, or 
any heuristic, e.g., linearize and do H2 design 

Stabilizer design options: 
1 

2 

Closed-loop stability analysis: 

Robust stability (e.g., IQC-based) or time-scale separation 
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Big Picture for OSS Control 
Optimality model reduces OSS control to output regulation 
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Application: Inexact Reference Tracking 

Want minimum error asymptotic tracking of a (possibly infeasible) 
reference signal subject to actuator limits, e.g. 

minimize 
ym,u 

kym − rk∞ 

subject to (ym, u) ∈ Y (w , δ) 

u ≤ u ≤ u 

If reference feasible, then exact tracking possible 

Could promote sparsity in steady-state control actions 
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1 

Application: Frequency Control of Power Systems 

Regulate frequency of an interconnected AC power system in 
presence of unknown disturbances (locally balance supply and 
demand) 

Balancing 
Authority 

Secondary 
Control 

ΔPref 

ΔPu 

(Δω, Δptie) 

2 Modern challenges / opportunities: 
variation due to RES =⇒ need fast control 

inverter-based resources =⇒ fast actuation 

new sensing, comm., comp. =⇒ new architectures 
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Key insights into frequency control problem 

1 For discussion, small-signal network of machines + turbine/gov 

Δθ̇i = Δωi , 

Mi Δ ̇ωi = − 
Xn 

j=1 
Tij (Δθi − Δθj ) − Di Δωi + ΔPm,i + ΔPu,i 

Ti Δ Ṗm,i = −ΔPm,i − R−1 
d,i Δωi + ΔPref 

i . 

2 Model internally stable, DC gain analysis yields h iX1 
ΔPrefΔωss = +ΔPu,iiβ 

i 

where β = 
P 
(Di + R−1) is frequency stiffness. i d,i 

3 Lots of flexibility in choice of ΔPref ! 
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Optimal Allocation of Secondary Resources 

ΔPu 

ΔPref Power 
System 

Δω 

Allocate reserves ΔPref subject to frequency regulation i 

Xn 
Ci (ΔPrefminimize )i 

ΔPref ∈Rn i=1 

subject to F Δω = 0 

This OSS problem satisfies the robust feasible subspace property 
=⇒ can construct (several) different optimality models! 
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OSS Framework Recovers Recent Controllers 
1 Distributed Averaging PI Control Xn 

aij (rCi (P
ref ) −rCj (P

ref�i = Δωi − ))i jj=1 

η̇i = �i 

Pref = Stabilizeri (�i , ηi , ωi )i 

Note: many architecture variations possible 

AGC (stylized version) 

Prefη̇ = k · Δωcc , i = (rCi )
−1(η) 

2 

3 Gather-and-broadacst (Dörfler & Grammatico) 

nX 
Prefη̇ =

1 
Δωi , = (rCi )

−1(η)i n 
i=1 
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Questions 
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Feedforward vs. Feedback Optimization 

Property Feedforward Feedback 

Setpoint Quality ≈ Optimal ≈ Optimal 

High-Fidelity Model Crucial Not crucial 

Robustness No Yes 

Feedback Design/Analysis Unchanged More difficult 

Computational Effort Moderate ??? 

MPC: high computational effort, difficult analysis ⇒ Alternatives? 

Compared to MPC, if we give a bit on trajectory optimality, can 
we can gain a lot on ease of design, analysis, and implementation? 

Here is a first cut of such an approach. 
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Is OSS Control just a standard tracking problem? 

w 

PlantController 
y?(w , δ) e 

− 

We want y to track y?(w , δ), but two problems: 
1 

2 

?unmeasured components of w change y

y? depends on uncertainty δ (relevant if Y ⊂ Rp) 

Standard tracking approach infeasible for quickly 
varying w(t), or large uncertainties δ, or particular 

choices of regulated outputs 

u y 
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Towards an internal model principle . . . 

� � 
Hy − Lw 

� = TT0 rf0(y , w) 
range(T0) = V(δ) ∩ null(H) 

uom 

Plant 
Optimality 
Model 

Stabilizing 
Controller 

Integral 
Control 

ymu 

w 

η 

� 
ξ 

Interpretation: Exact robust asymptotic optimization 
achieved if loop incorporates a model of the optimal set of 

the optimization problem 



Slide on EOA Approach . . . 



Example 1: Necessity of Equilibrium Constraints 
Consider the OSS control problem: 

Dynamics: 1 

� 
ẋ1 

ẋ2 

� 

= 

� 
−1 0 
1 −1 

� � 
x1 

x2 

� 

+ 

� 
1 
−1 

� 

u + 

� 
1 
1 

� 

w 

y = 

� 
x1 

u 

� 

2 Optimization problem: 

minimize 
y∈R2 

g(y) := 
1 
2
y 2 
1 + 

1 
2
y 2 
2 

What happens if we omit the equilibrium constraints? 

η̇ = rf0(y) 

u = −K η 



Example 1: Necessity of Equilibrium Constraints (cont.) 



Example 2: Necessity of Robust Feasible Subspace 
Consider the OSS control problem: 

Dynamics: 1 

� 
ẋ1 

ẋ2 

� 

= 

� 
−1 − δ 0 
1 + δ −1 

� � 
x1 

x2 

� 

+ 

� 
1 
−1 

� 

u + 

� 
1 
1 

� 

w 

y = 

� 
x1 

u 

� 

2 Optimization problem: 

minimize 
y∈R2 

1 
2
y 2 
1 + 

1 
2
y 2 
2 

subject to y ∈ Y (w , δ) = y(w , δ) + V (δ) 

�� �� 
1 

We can show V (δ) = span ⇒ V (δ) dependent on δ. 
δ 



Example 2: Necessity of Robust Feasible Subspace (cont.) 

We apply our scheme anyway supposing δ = 0 

Optimality model + integral control yields. . . 

If δ = 0.5 in the true plant 
If δ = 0 in the true plant 

⇒ achieve sub-optimal cost of ⇒ achieve optimal cost of 0.1538. 
0.1599. 



1 

Robust Output Subspace Optimality Model 

If furthermore V (δ) itself is independent of δ, then 

µ̇ = Hy − Lw 

ν̇ = max(ν + Jy − Mw , 0) − ν 

� = R0 
T(rf0(y , w) + HT µ + JTν) (Design freedom!) 

range R0 = V(δ) 

is also an optimality model for the LTI-Convex OSS Control Problem. 

Can take R0 = I if V (δ) = Rp, which holds if � � 
A 
C 

B 
D 

has full row rank ⇐⇒ 
No transmission zeros 

at s = 0 

Again, different equivalent formulations of optimization problem give 
different optimality models 

2 
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OSS Control in the Literature 

The OSS controller architecture found throughout the literature on 
real-time optimization. 

Problem [Nelson and Mallada ’18] 

Design a feedback controller to drive the system 

ẋ(t) = Ax(t) + B(u(t) + w) 

ym(t) = Cx(t) + D(u(t) + w) 

to the solution of the optimization problem 

minimize 
x∈Rn 

f (x) . 



Optimality Model

OSS Control in the Literature (cont.) 

u + w , ym 
Observer 

x̂ −rf0 
� 

PI 
u 

Controller Design 
The optimality model is an observer with gradient output 

ẋ̂ = (A − LC )x̂ + (B − LD)(u + w) + Lym 

� = −rf0(x̂) . 

A PI controller serves as internal model and stabilizer 

ėI = � , u = KI eI + Kp� . 



OSS Control in the Literature (cont.) 

Observer −rf0 PI 
u + w , ym x̂ � u 

Optimality Model 

Controller Design 
The optimality model is an observer with gradient output 

˙̂x = (A − LC )x̂ + (B − LD)(u + w) + Lym 

� = −rf0(x̂) . 

A PI controller serves as internal model and stabilizer 

ėI = � , u = KI eI + Kp� . 


	Appendix

