

Progress on Power Hardware in the Loop based Anti-Islanding Testing of PV Converters

Michael "Mischa" Steurer

Leader Power Systems Research Group steurer@caps.fsu.edu, phone: 850-644-1629

James Langston langston@caps.fsu.edu John Hauer hauer@caps.fsu.edu

Karl Schoder schoder@caps.fsu.edu

Center for Advanced Power Systems Florida State University Tallahassee, Florida

Barry Mather

PI for the SCE Hi-Pen PV Integration Project Barry.Mather@nrel.gov, phone: 303-275-4378

> National Renewable Energy Laboratory Golden, Colorado

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy

 2nd Annual International Workshop at Clemson University Test Center
 Charleston, SC, September 18, 2014

- IEEE Std. 1547.1
 - Dedicated RLC load bank
 - Quality factor of 1 (and steps within ±0.05)
 - Resonant at fundamental frequency
 - Three power levels (100%, 66% and 33%)
 - PV inverter required to disconnect within 2 seconds
 - PV active power matched to resistive load

Laboratory Facilities

- 7.5 MVA, 4.16kV test and evaluation facility
 5 MW variable voltage and variable frequency
 - converter (4x1.25 MW, 180 A) - 5 MW dynamometer
- 5 MW MVDC test capability
 - 4 MMC units, 0...6 kV, 0...210A (24 kV)
- Linear amplifier (<400 V, 15 kW)
- Real-time Simulator (RTS)
 - Down to 2 µSec time step
- Integrated
 - Hardware-in-the-Loop (HIL) testbed
 - Testbed(s) + RTS
 - Rest-of-System emulation
 - Custom protection and automated tests
 - Derisking: Model and simulate experiments

Test Setup for PV Inverter Testing at CAPS VVS-DC and VVS-AC Arrangement

PHIL Interface Algorithms

Purpose: Interface simulation through power amplifiers with device under test.

Setup with 20 kW SMA converter

Time Domain Response with real Load Bank

SMA Sunny TriPower 20 kW
8 kW, Qf = 1

Three detection times shown are based on DC current, AC current, and AC voltage.

- SMA Sunny TriPower 20 kW
- 8 kW, Qf = 1

Three detection times shown are based on DC current, AC current, and AC voltage.

- 15 tests at quality factors 1, 2, and 3
- Load bank tests vs. PHIL tests

Test Results: Stability Aspects

Probing for matching load bank tests

PHIL-AI, CAPS NREL, 9/18/2014

Summary and Outlook

- Feasibility of the PHIL approach demonstrated for antiislanding with 20 kW unit
- Future: experiment with 60 kW Fronius unit
 - Better quantify accuracy and improve understanding of stability/feasible regions
 - Use alternative PHIL interface algorithms to increase region of stability
- Opportunities: Extend PHIL anti-islanding_{testin} gto MW scale power levels
 - Real cost benefit: no RLC load bank required
- Alternate test conditions (Rest-of-System)
 - More challenging and beyond RLC load bank
 - Is RLC load bank based anti-islanding realistic?

