

Autorial Research, Innovation Autorial Research, Innovation Analopment Center

eGRID Introduction and Status

2nd International Workshop September 17th, 2014

Driving economic growth, innovation, and workforce development for South Carolina

The EGRID Center Team Members

J. Curtiss Fox, PhD Randy Collins, PhD, PE Thomas Salem, PhD, PE Mark McKinney, PhD Ramtin Hadidi, PhD Eric Bosnic Benjamin Gislason Mark Milcetich

Graduate Students:Lindsey StephensMSEENikitas ZagorasMSEE

Undergraduate Students:

Diana AgrestClemson UniversityTyler VasasThe Citadel

Director of Operations Project Co-PI Research Scientist Visiting Research Scientist Research Scientist Research Engineer Research Engineer Electrical Technician

The SCE&G Energy Innovation Center

Transforming the electrical grid into an energy efficient network requires:

- new technologies that must play a significant role in power system stability.
- the ability to replicate a complex dynamic system like the electrical grid for testing purposes.
- extensive testing of hardware and software to meet safety and quality assurance requirements through *'fully integrated'* system testing.
- <u>parallel model verification</u> and validation of physical hardware to ensure higher reliability and stability once deployed on the electrical grid.

Advanced Testing Lowers the Risks and Costs of New Technology Introduction into the Market

How the EGRID center fits into the technology development cycle

eGRID Founding Partners

U.S. Department of Energy

TECO Westinghouse

eGRID Market Applications

Large Solar **PV** Converters

Micro-Grid Applications **EV** Charging **Stations**

Utility Scale Energy Storage

Aerospace

Wind Energy

Traditional Distributed Generation (Diesel, NG. etc.)

Smart Grid Technologies

SCE&G Energy Innovation Center

SCE&G EIC Electrical Single Line

E

The 20 MVA HIL Grid Simulator

Three Independent Test Bays

Overall Electrical Canabilities

overan Electrical capabilities			
Main Test Bay			
Nominal Voltage	24 kV (50/60 Hz)		
Nominal Power	20 MVA		
Frequency Range	45 to 65 Hz		
Sequence Capabilities	3 and 4 wire operation		
Overvoltage capabilities	133% Continuous Overvoltage		
Fault Simulation	Yes (includes Reactive Divider)		
Hardware In the Loop	Yes		
Small Test Bay 1			
Nominal Voltage	4160 V (50/60 Hz)		
Nominal Power	5 MVA (4 MW @ 0.8 PF)		
Frequency Range	0 to 800 Hz		
Sequence Capabilities	3 and 4 wire operation		
Overvoltage capabilities	133% Continuous Overvoltage		
Fault Simulation	Limited to Converter Only		
Hardware In the Loop	Yes		
Small Test Bay 2			
Nominal Voltage	4160 V (50/60 Hz)		
Nominal Power	5 MVA (4 MW @ 0.8 PF)		
Frequency Range	0 to 800 Hz		
Sequence Capabilities	3 and 4 wire operation		
Overvoltage capabilities	133% Continuous Overvoltage		
Fault Simulation	Limited to Converter Only		
Hardware In the Loop	Yes		

The 15 MW HIL Grid Simulator

Step Up and Step Down Transformers

Four TWMC Versabridge Power Amplifiers

Reactive Divider Network Room

Grid Integration Evaluations

Hardware-in-the-Loop Testing

"I'm connected at **Bus** #N"

Energy Storage Integration

Energy Storage Integration

TECO Westinghouse Motor Company: Power Amplifier Units

TWMC Power Amplifier

Installed Power	20 MVA (15 MW @ 0.8 PF)
Rated Power	15 MVA (12 MW @ 0.8 PF)
Cabinet Power Split	4 x 3.75 MVA or 2 x 7.5 MVA
Rated Voltage	0 - 4160 V
Overvoltage	133 % Rated Output Voltage
Multilevel Operation	7 - Levels (9 - Levels Overvoltage)
Frequency Range	3 - 66 Hz
Overload Capability	110% for 60 s (10 min duty cycle)

Individual power cube with three phase input and single phase output

4 Power Slices per Amplifier Section

8 Parallel Amplifiers arranged into 4 Cabinets

TECO Westinghouse Motor Company: Power Amplifier Units

- Phase Shifted Carrier PWM
 - High degree of harmonic cancelation due to multilevel architecture
 - Increased reference sampling fidelity
- Sampling fidelity is further increased by using asymmetrical sampling of each individual carrier

First noise mode is at 16 kHz (Fs x 2 x Carriers), 8 times the switching frequency

Reference resolution also at 12 kHz using asymmetrical sampling

Power Amplifier Units Commissioning Data

PAU Cube output switching frequency parameter set to 2 kHz

Fault-Ride Through (FRT) Requirements

Why a Hybrid Method?

Increased flexibility and accuracy of FRT evaluations

- Faulted at the point of common coupling (PCC)
- True zero voltage faults (ZVRT)
- Magnetic flux decoupling between transformers
- Real inductive loading for transient time constant analysis
- Power electronic switching for point-in-wave studies
- **Backwards compatible** with existing methods

The Hybrid Method: **Operation Cycle**

The Operation Cycle

- **Open Series** 1. **Bypass Switch**
- **Close Shunt** 2. Fault Switch
- **Open Shunt** 3. **Fault Switch**
- **Close Series** 4. **Bypass Switch**

cycle.

Reactive Divider Network

- Safety Considerations
 - Access controlled room
 - Automatic grounding system when not in service
- Voltage Isolation
 - 35 kV insulation system
 - 2500 A (100 MVA) DUT fault duty
- Performance and Flexibility
 - Remote control of all elements allows for setup and operation without the need for room access
 - Individual phase operation allows for thousands of three phase impedance combinations

Table of Fixed Reactance Combinations

Fixed Switch Positions	Shunt Fixed (mH)	Series Fixed (mH)	Total Shunt (mH)	Total Series (mH)
1-1-1-0	0	25	0-25	25-50
1-1-0-0	0	50	0-25	50-75
1-0-0-0	0	75	0-25	75-100
0-1-1-1	25	0	25-50	0-25
0-1-1-0	25	25	25-50	25-50
0-1-0-0	25	50	25-50	50-75
0-0-1-1	50	0	50-75	0-25
0-0-1-0	50	25	50-75	25-50
0-0-1	75	0	75-100	0-25

Reactive Divider Network

- Safety Considerations
 - Access controlled room
 - Automatic grounding system when not in service
- Voltage Isolation
 - 35 kV insulation system
 - 2500 A (100 MVA) DUT fault duty
- Performance and Flexibility
 - Remote control of all elements allows for setup and operation without the need for room access
 - Individual phase operation allows for thousands of three phase impedance combinations

Table of Fixed Reactance Combinations

Fixed Switch Positions	Shunt Fixed (mH)	Series Fixed (mH)	Total Shunt (mH)	Total Series (mH)
1-1-1-0	0	25	0-25	25-50
1-1-0-0	0	50	0-25	50-75
1-0-0-0	0	75	0-25	75-100
0-1-1-1	25	0	25 50	0-25
0-1-1-0	25	25	25-50	25-50
0-1-υ-υ	23	50	25 50	50-75
0-0-1-1	50	0	50-75	0-25
0-0-1-0	50	25	50-75	25-50
0-0-0-1	75	0	75-100	0-25

Reactive Divider Network Commissioning

Characteristics of the 60 kV V_{DRM} SCR AC switches

Fiber optically coupled phase independent firing signals

Turn on times using FO triggering are near the rated turn on time of individual SCRs at just over 5 μs

nmissioning tests included:

ification of each switch ng in situ with a VARIAC and

ng one PAU and mentarily loading the PAU n the complete RDN uctive load

eGRID SCADA System

Detailed specifications developed through coordinated efforts between:

Savannah River	Clemson	National
National Laboratory	University	Instruments

- Significant amount of hardware and software shared with the WTDTF systems
- Provides a powerful and flexible platform for the development of custom control systems to meet the various grid integration evaluation scenarios

Next Up: TWMC Controlled DC Supply Front End

- Modify a single TWMC PAU cabinet to provide the DC supply without control changes
- Aimed at solar testing with Maximum Power Point Tracking and 2D PV field simulation
- Partial bi-directional power flow (dynamic braking resistors) allows for tight regulation
- A novel control system will be used on existing NI PXI/FPGA hardware to integrate with the SCADA system

DC Supply Module Specifications

	1 Module	6 Modules
Voltage Range	200 – 1000 V	
Current Rating	420 A (1000 V)	2500 A (1000 V)
Short Circuit Current	835 A	5000 A
Ripple Frequency	2400 – 4800 Hz	
Reverse Power Flow	67 kW (1000 V)	400 kW (1000 V)

