

MENERGY
Reduction Research, Innovaddo **Explormant Canter**

eGRID Introduction and Status

2nd International Workshop September 17th, 2014

 Driving economic growth, innovation, and workforce development for South Carolina

The EGRID Center Team Members

J. Curtiss Fox, PhD J. Curtiss Fox, PhD
Randy Collins, PhD, PE Thomas Salem, PhD, PE
Mark McKinney, PhD Mark McKinney, PhD Ramtin Hadidi, PhD Eric Bosnic Benjamin Gislason Mark Milcetich

Lindsey Stephens MSEE
Nikitas Zagoras MSEE Nikitas Zagoras Graduate Students: MSEE

Undergraduate Students:

Diana Agrest Clemson University Tyler Vasas The Citadel

Director of Operations Project Co-PI Research Scientist Visiting Research Scientist Research Scientist Research Engineer Research Engineer Electrical Technician

The SCE&G Energy Innovation Center

Transforming the electrical grid into an energy efficient network requires:

- new technologies that must play a significant role in power system stability.
- the ability to replicate a complex dynamic system like the electrical grid for testing purposes.
- extensive testing of hardware and software to meet safety and quality assurance requirements through *'fully integrated'* system testing.
- parallel model verification and validation of physical hardware to ensure higher reliability and stability once deployed on the electrical grid.

Advanced Testing Lowers the Risks and Costs of New Technology Introduction into the Market

How the EGRID center fits into the technology development cycle

ENERGY **ENERGY**

Energy Efficiency

eGRID Market Applications

LV Charging

PV Converters Applications Stations Energy Storage

Traditional Distributed Smart Grid Wind Energy Generation (Diesel, NG. etc.) Technologies Aerospace

SCE&G Energy Innovation Center

SCE&G EIC Electrical Single Line

Е

The 20 MVA HIL Grid Simulator

Three Independent Test Bays

The 15 MW HIL Grid Simulator

Four TWMC Versabridge Power Amplifiers Reactive Divider Network Room

Grid Integration Evaluations

Hardware-in-the-Loop Testing

Device Under Test *"I'm connected at Bus #N"*

Energy Storage Integration

Energy Storage Integration

Model of a

at EGRID Simulated Grid

TECO Westinghouse Motor Company: Power Amplifier Units

TWMC Power Amplifier

Individual power cube with three phase input and single phase output

4 Power Slices per Amplifier Section

8 Parallel Amplifiers arranged into 4 Cabinets

TECO Westinghouse Motor Company: Power Amplifier Units

- **Phase Shifted Carrier PWM**
	- due to multilevel architecture High degree of harmonic cancelation
	- Increased reference sampling fidelity
- Sampling fidelity is further increased by using asymmetrical sampling of each individual carrier

 Simulations and FAT testing show excellent results with 2 kHz switching frequencies

 First noise mode is at 16 kHz (Fs x 2 x Carriers) , 8 times the switching frequency

 12 kHz using asymmetrical Reference resolution also at

Power Amplifier Units Commissioning Data

 PAU Cube output switching frequency parameter set to 2 kHz

Fault-Ride Through (FRT) Requirements

Why a Hybrid Method?

Increased flexibility and accuracy of FRT evaluations

- Faulted at the point of common coupling (PCC)
- True zero voltage faults (ZVRT)
- Magnetic flux decoupling between transformers
- Real inductive loading for transient time constant analysis
- Power electronic switching for point-in-wave studies
- **Backwards compatible** with existing methods

The Hybrid Method: Operation Cycle

The Operation Cycle

- 1. Open Series Bypass Switch
- 2. Close Shunt Fault Switch
- 3. Open Shunt Fault Switch
- 4. Close Series Bypass Switch

cycle.

Reactive Divider Network

- • Safety Considerations
	- – Access controlled room
	- Automatic grounding system when not in service
- Voltage Isolation
	- 35 kV insulation system
	- 2500 A (100 MVA) DUT fault duty
- Performance and Flexibility
	- Remote control of all elements allows for setup and operation without the need for room access
	- $-$ Individual phase operation allows for thousands of three phase impedance combinations

Table of Fixed Reactance Combinations

Reactive Divider Network

- • Safety Considerations
	- Access controlled room
	- Automatic grounding system when not in service
- Voltage Isolation
	- 35 kV insulation system
	- 2500 A (100 MVA) DUT fault duty
- Performance and Flexibility
	- – Remote control of all elements allows for setup and operation without the need for room access
	- – Individual phase operation allows for thousands of three phase impedance combinations

Table of Fixed Reactance Combinations

Reactive Divider Network Commissioning

 Characteristics of the 60 kV V_{DRM} SCR AC switches

 Fiber optically coupled phase independent firing signals

 Turn on times using FO triggering are near the rated turn on time of individual SCRs at just over 5 µs

nmissioning tests included:

ification of each switch ig in situ with a VARIAC and $\overline{\mathcal{A}}$

ng one PAU and mentarily loading the PAU n the complete RDN **uctive load**

eGRID SCADA System

• Detailed specifications developed through coordinated efforts between:

- Significant amount of hardware and software shared with the WTDTF systems
- Provides a powerful and flexible platform for the development of custom control systems to meet the various grid integration evaluation scenarios

Next Up: TWMC Controlled DC Supply Front End

- Modify a single TWMC PAU cabinet to provide the DC supply without control changes
- Aimed at solar testing with Maximum Power Point Tracking and 2D PV field simulation
- Partial bi-directional power flow (dynamic braking resistors) allows for tight regulation
- A novel control system will be used on existing NI PXI/FPGA hardware to integrate with the SCADA system

DC Supply Module Specifications

