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THANKING,
PASTSEO N System 1 & 2 in DL and Al
n .
AL @ "From System 1 Deep Learning to System 2

Deep Learning" — Yoshua Bengio, NeurlPS 2019

KAHNEMAN

Modern ('21) Applied Mathematics as System 2 ... Harvesting
20's Applied Math + (System 1.8)

Data & Model Revolution (System 1.2)

@ System 1 — operates automatically & quickly [Deep Learning,
empowered by Automatic Differentiation]

@ System 2 — allocates attention to effortfull mental activities
[Physics Informed Al — Explainable, Generalizable, Generative]
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From ODE to PDE for Model Reduction
Power System Transients With Physics-Informed PDE
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@ Physics Helps to Build Reduced Models [Power]
@ Physics = Electro-Mechanical Waves
@ From ODE to PDE for Model Reduction
@ Power System Transients With Physics-Informed PDE
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Physics-Informed, Al-enabled Reduced Models

Al/Machine Learning (e.g. Neural Network, Graph Models, etc)

@ will make Energy System Computations
o faster (efficient)
e possible even when data/measurements incomplete
@ requires ground-truth data
o actual measurements (Phasor Measurement Units, pressures,
temperature in the room, etc)
o energy/gas flow solvers (microscopic simulations) — reliable,
possibly heavy

@ can be energy-system "informed" (System 2) vs "agnostic"
(System 1)
@ contemporary Applied Mathematics methods/options are
many
e should be gauged to available data, level of uncertainty, etc

Michael (Misha) Chertkov chertkov@arizona.edu Applied Math of Scientific & Artificial Intelligence



Physics Helps to Build Reduced Models [ Physics = Electro-Mechanical Waves

From ODE to PDE for Model Reduction
Power System Transients With Physics-Informed PDE

Incomplete Review: Brief, Recent, Biased

Al/ML in Power Systems ( , System 2 & juxtaposition)

Structure Learning, Sparse Measurements, Graphical Models, Focus on Power

Learning ODE: Power Transmission, Dynamic Coefficients in Swing Equations,
Deterministic and Stochastic, Lokhov, et al [2017]

Distribution: Deka, et al [2016-2019]

Real-time Faulted Line Localization and PMU Placement in Power
Transmission through CNN: Li, et al [2018]
Collocation Point Neural ODE for Power Systems: Misuris, et al [2018]

Learning a from Terminal Bus Data: many ML schemes,
tradeoffs, ranking models according to regimes, Stulov et al [2019]

Learning from power system data stream, phasor-detective approach, Escobar
et al [2019]
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Incomplete Review: Brief, Recent, Biased

Al/ML in Power Systems ( , System 2 & juxtaposition)

@ Physics-Informed Graphical Neural Network for Parameter & State
Estimations in Power Systems https://arxiv.org/abs/2102.06349 (Pagnier
& MCQ))

@ Embedding Power Flow into Machine Learning for Parameter and State
Estimation https://arxiv.org/abs/2103.14251 (Pagnier & MC)

[+ for Post-Fault Localization, Dynamic State
Estimation and Optimal Measurement Placement in Power Systems?
https://arxiv.org/abs/2104.03115 (Afonin & MC))

@ Towards Model Reduction for Power System Transients with Physics-Informed
PDE, IEEE Access 2022, https://ieeexplore.ieee.org/document/9796532
(Pagnier, Fritzsch, Jacquod & MC)

@ Physics-Informed Machine Learning for Electricity Markets: A NYISO Case
Study, under review at IEEE Transactions on Energy Markets, Policy, and
Regulation, https://arxiv.org/abs/2304.00062 (Ferrando, Pagnier, Mieth,
Liang, Dvorkin, Bienstock & MC)
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o L. Pagnier, J. Fritzsch, P. Jacquod and M. Chertkov, "Toward
Model Reduction for Power System Transients With
Physics-Informed PDE", in IEEE Access, vol. 10, pp.
65118-65125, 2022, doi: 10.1109/ACCESS.2022.3183336.

@ + work in progress

Laurent Pagnier Julian Fritzsch Philippe Jacquod
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Physics = Electro-Mechanical Waves

Pre-Loss of Generation
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Physics = Electro-Mechanical Waves

0.2 Seconds after Contingency
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Model Reduction

inite Element Grid

654 nodes
(3809 in
discrete
model)
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How does model reduction work?

@ Ground Truth — reliable but computations "heavy" =

@ Reduced Model — lighter computations-wise, loosing some
accuracy (but hopefully not too much)

Transient (seconds) Dynamics of the grid

o Swing Equation: m;; + d;; = p; — ZJ- vivjbjjsin(6; — 0;) =
@ Reduced Model Options?
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How does model reduction work?

@ Ground Truth - reliable but computations "heavy" =

@ Reduced Model — lighter computations-wise, loosing some
accuracy (but hopefully not too much)

A

Transient (seconds) Dynamics of the grid

@ Swing Equation: mif; + dif; = pi — ZJ- vivjbjsin(; — 0;) =
@ Reduced Model Options?

PDE as the Reduced Model

o m(x)2=0(t; x) + d(x) 20(t; x) =

p(t;x)+ > 8raba,3(x)8f59(t;x)
a,B=1,2
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How does model reduction work?

e Ground Truth — reliable but computations "heavy" =

o Reduced Model — lighter computations-wise, loosing some
accuracy (but hopefully not too much)

A\

Transient (seconds) Dynamics of the grid

o Swing Equation: m;; + d;; = p; — Zj vivjbjjsin(6; — 6;) =
@ Reduced Model Options?

v

PDE as the Reduced Model

o m(x)2%6(t; x) + d(x) 20(t; x) =

p(t;x)+ > Or, bap(x)0:,0(t; x)
o, =12

o Why is Partial Differential Equation modeling a sound option
for model reduction?

_____________ —
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Why is PDE a sound option for model reduction?

Approximating the swing ODEs by a PDE? Really?

o Naively: increases # degrees of freedom
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Why is PDE a sound option for model reduction?

Approximating the swing ODEs by a PDE? Really?

o Naively: increases # degrees of freedom

... but thinking a bit more (system 2) it has a sense because

@ Solutions of linear 2+1 dimensional PDE assume spatial
regularization via a 2d grid with fewer # grid points

@ Operations are much more efficient over a regular lattice

@ # physical parameters can be reduced dramatically via
coarsening — fewer & large-scale harmonics

Michael (Misha) Chertkov chertkov@arizona.edu Applied Math of Scientific & Artificial Intelligence
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Why is PDE a sound option for model reduction?
Approximating the swing ODEs by a PDE? Really?

o Naively: increases # degrees of freedom

... but thinking a bit more (system 2) it has a sense because

@ Solutions of linear 241 dimensional PDE assume spatial
regularization via a 2d grid with fewer # grid points

@ Operations are much more efficient over a regular lattice
@ # physical parameters can be reduced dramatically via
coarsening — fewer & large-scale harmonics
Inspired by 1+1 PDE modeling of PS:
@ A. Semlyen, 1974.
@ J. S. Thorp, C. E. Seyler, and A. G. Phadke, 1998.
@ M. Parashar, J. S. Thorp, and C. E. Seyler, 2004.

@ |. Stolbova, S. Backhaus, M. Chertkov, 2015.

A\
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Why is PDE a sound option for model reduction?

Approximating the swing ODEs by a PDE? Really?

@ Naively: increases # degrees of freedom

... but thinking a bit more (system 2) it has a sense because

@ Solutions of linear 241 dimensional PDE assume spatial
regularization via a 2d grid with fewer # grid points

@ Operations are much more efficient over a regular lattice

@ # physical parameters can be reduced dramatically via
coarsening — fewer & large-scale harmonics

v

How can we make it work?
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From Swing Model to PDE Model

@ From Swing Equation:
m;é' aF d9 = pi — Z V,'ij,'j sin(@- = 9')

o To PDE as the Reduced Model m(x) £56(t; x) + d(x) Z6(t; x) =
p(t;x)+ > O bap(x)0.,0(t; x)

a,B=1,2
o Vi: 0i(t)—0(t;x), mi — m( ), di — d(x), pi(t) —
p(t; x), bjj = bag(x), Vo, =1,2.

Neumann Boundary Conditions:
@ Vanishing normal derivative of the angle field on the domain
boundary 92:
Ve, Vx € 02: Y7 na(x)bag(x)0r,0(t; x) =0
a,f=1,2
@ e.g. guaranteeing equilibration to the same frequency
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Learning the PDE

Learning (work in progress)

m(x)6(x) + d(x)8(x) = p(x) + V ([bx(g") by((’x)] ve(x)) (1)

1. Switched to finite element method
2. b, and by are now proper fields
3. We want to learn susceptances from steady state solutions

4. We want to learn m and d from dynamical simulations
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Finite Element Grid

654 nodes
(3809 in
discrete
model)
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Learning the PDE

Training in Steps: Steady State First

: Trained on 48 different
. dispatches
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Learning the PDE

Steady State Training (Results)
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Learning the PDE

Steady State (solution)
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Learning the PDE

Training Dynamical Parameters

m We use 900 MW faults on 12
generators

m Integrate dynamics for 25 seconds

m The frequency repsonse is
compared on 509 nodes
homogeneously spread over the grid

m m(x) and d(x) are expressed as
linear combination of the first 130
eigenvectors of the grid Laplacian

m We learn the coefficients of the
eigenvectors
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Learning the PDE

Dynamical Parameters

Discrete
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Learning the PDE

Dynamical Parameters

Discrete
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Physics Helps to Build Reduced Models [

Physics Test: Speed of EM waves: Inhomogeneous Map

& @ PanTaGruEl model: 3809
buses, 618 generators and

4944 lines. (3221 nodes in

the "full" discretization of
our PDE model.)

@ (a) Assessment of the local propagation speed as
C(X) = v/ b(x)/m(x).

@ (b)-(d) Fronts of the perturbation at incremental time
intervals of At = 0.6s, after a fault in Greece (violet star), for
inhomogeneous (red) and average parameters (blue) — slower.

Applied Math of Scientific & Artificial Intelligence
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Physics Test: Frequency Response of Generators

(b)

0.025 -
N 0.000 (0)
= -0.025f
<1 -0.050
L L J g L L J
0 5 10 15 0 5 10 15
times| time [s|

(©) 0.025 (@) 0.025 1

N 0.000 N 0.000

’% —0.025 W % ~0.025 »—\/\/_\f

<1 -0.050 <1 -0.050
-0.075 . . ] -0.075

0 5 10 15 0 5 10 15
time|s] time [s]

PDE vs Ground Truth (ODE)

@ Response in (a) Bulgaria, (b) Poland, (c) France, and (d)
Spain to a 900 MW loss of power in Greece.

o dotted — PDE, solid — Ground Truth (ODEs)
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Summary & Path Forward

What did we achieve so far?

@ Construction of the reduced PDE model (of the ODE/swing
equations). Included:

@ Validation via Static and Dynamic Tests — reduced PDE vs
Ground Truth (ODEs)

@ Observation: — PDE offers significant gain in efficiency. Need
further development.

A

Work in Progress: Towards Physics (System 2) Informed ML

@ Improving warm start and functional maps for m(x), d(x) and
bap(x)

@ Adaptive grids, towards control

Goal: Efficient & Accurate Evaluation of Multiple Scenarios

@ Automatic & much faster than real-time dynamics & control
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© Towards Control Under Insults & Uncertainty [Gas]
@ Use Case of Israel Natural Gas System
@ Modeling: Gas Flow. Staggered Grid Method
@ Insults, Uncertainty & Control
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Natural Gas System: Setting

Control of Linepack in Natural Gas
System: Balancing Limited Resources
Under Uncertainty

Criston Hyett, Laurent Pagnier, Jean Alisse, Lilah
Saban, Igal Goldshtein, Misha Chertkov
University of Arizona & NOGA Israel

May 17, 2023

Pipeline
Simulation
Interest Group
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Natural Gas System: Setting

Israel Natural Gas

 Starting ~2010, large natural gas
(NG) reserves were discovered off the
coast of Israel

Leviathan ‘Karish
» These supplies transitioned Israel Tanin, oy
from an energy importer to an
exporter of NG, and set NG as main
fuel for electricity production.

» Following the global agreement at the
Paris Climate Accords in
2015, Israel plans to convert
remaining coal-fired plants to NG.

Michael (Misha) Chertkov chertkov@arizona.edu Applied Math of Scientific & Artificial Intelligence
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Natural Gas System: Setting

Israel Natural Gas

» Simultaneously, Israel is committed to
increasing renewables (mainly PV),
with the goal of 30% production by
2030

Israel Energy Portfolio

Jerusalem

0
] 2030

i A

Natural Gas Renewables (PV) Solar Atlas 2.0, Solar resource data:
Solargis.

© 2020 The World Bank, Source: Global
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Natural Gas System: Setting

Reduced Model of Israel Natural Gas
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Control of Linepack in Natural Gas System

Effective Gas Flow Equations

Under reasonable assumptions, the system of PDEs governing gas flow is

6tp+ax¢ =0

0 +0cp = —ﬁ@

Supplemented with initial
p(x,0) = po(x)
¢(x, 0) = ¢0(x)

And boundary conditions at each node

pi(t) or ¢;(t)

And an equation of state relating pressure and density — we use CNGA
p(p) = Z(p, T)RTp

Michael (Misha) Chertkov chertkov@arizona.edu Applied Math of Scientific & Artificial Intelligence
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Control of Linepack in Natural Gas System

Staggered-Grid Method

Gyrya, Vitaliy, and Anatoly Zlotnik. "An explicit staggered-grid
method for numerical simulation of large-scale natural gas pipeline
networks." Applied Mathematical Modelling 65 (2019): 34-51.

Michael (Misha) Chertkov

chertkov@arizona.edu

Explicit, 2" order, centered finite
difference method

Solves conservation of mass and
momentum on staggered grids

Conserves mass to numerical precision

Stable given condition is satisfied

I CIOFES!

Applied Math of Scientific & Artificial Intelligence
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Insults, Uncertainty & Control of Natural Gas S

Scenarios

A reference week in August Pressure variation in flow-control regime

Scenario #1 with empirical noise added to Linepack and pressure drift when using flow control
demand curves, supplies unchanged and uncertain demand

Scenario #2 with insult at node 1 Introduce the notion of survival time, and set
baseline without any controls.

Scenario #3 with insult time change to lllustrate that survival times change with timing of
trough of insult.

linepack timeseries.

Scenario #4 with step-wise supply Survival times lengthen, butbecome less certain.
increase from

node # 8.

Scenario #5 with step-wise curtailing of No low pressure crossings are found. The high
demand. pressure at node # 8 shows need for finer control.
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]

Use Case of Israel Natural Gas System
Modeling: Gas Flow. Staggered Grid Method
Insults, Uncertainty & Control

of Natural Gas System

Results: Scenario 1
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Insults, Uncertainty & Control of Natural Gas System

Uncertainty

Moderate uncertainty at demand nodes represented via substitution of stochastic
process for boundary condition
a;(t) - X;(®)
where
dX;(t) = a(d(t) — X;(t)) +ydw
Is an Ornstein-Uhlenbeck process
> E[X;(O)] = d;(t)

> Var(X, (D) = - (1 - e*)

» The parameters were tuned heuristically to ensure the mean was respected,
and the variance approaches
Var(X;(t)) =~ 0.014?
with yu; being the mean withdrawal of node i.
11
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Insults, Uncertainty & Control of Natural Gas System

Results: Scenario 2
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Distributions of linepack and pressures for random perturbations added to August week
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Insults, Uncertainty & Control of Natural Gas System

Results: Scenario 3 & 4
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Linepack and pressures responding to loss of supply at node 1. (Left) shows the insult
at a peak of intraday linepack, and (right) shows the same insult at the trough.

T=4.13+0.38 hrs T =3.5840.89 hrs
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Insults, Uncertainty & Control of Natural Gas System

Results: Scenario 5
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Insult at hour 48, implementing a max-flow control on the remaining supply at node 8
T =14.17 + 4.07
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Insults, Uncertainty & Control of Natural Gas System

Towards Control Under Insults & Uncertainty [Cas]

Results: Scenario 5
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time (hrs) = 0.000

Insult at hour 48, implementing a max-flow control on the remaining supply at node 8
T=14.17 £ 4.07
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Michael (Misha) Chertkov rtkov@arizona.edu Applied Math of Scientific & Artificial Intelligence



Use Case of Israel Natural Gas System
Towards Control Under Insults & Uncertainty [Cas] Modeling: Gas Flow. Staggered Grid Method
Insults, Uncertainty & Control

Insults, Uncertainty & Control of Natural Gas System

Results: Scenario 6
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Insult at hour 48, implementing a max flow control at node 8, and curtailing demand at
hour 50.
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Summary & Path Forward

What did we achieve so far?

@ Built Reduced Model of Israel Gas System. Considered Realistic
Insult(s) and Uncertainty Scenarios.

@ Started to work on implementing (for gas and gas+power systems)
and developing new Tools for Sensitivity Analysis — what if ... with

Julia, Automatic Differentiation of adjoints
V.

Work in Progress:

@ Real-time Modeling: insults at any time, broader set of uncertain
scenarios

@ Effect on Power Systems — Emergency Transition to Secondary Fuel

@ New Tools for New Problems — under umbrella of Physics-Informed
& Data-Driven Learning & Control

.
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Outline

© Predict & Prevent Against Rare Events [Heat]
@ Multiplicative Noise
@ Thermal Control of Buildings
@ Fat (Algebraic) Tails & Synthesis
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“Universality and Control of Fat Tails" MC

o |EEE Control System Letters & CDC 2023,
https://ieeexplore.ieee.org/document/10131981

@ + reinforcement learning extension(s): work in progress with
S. Konkimalla & L. Pagnier
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Linear System Driven by Multiplicative Noise

S (my £ () (1) + &(1) + i)

o m=(mj:Vi,j=1,---, d)=const

o o(t) = (ojj(t): Vi, j) — zero-mean stochastic
o &(t) = (&i(t) : Vi) — zero-mean white-Gaussian
o u(t) = (uj(t) : Vi) — vector of control

o(t) Multiplicative Stochastic
° %W =oW, W(t)- Texp
o Oseledets theorem: at t — oo, log(W™ W)/t — const
° Wﬁ = C,'f;', A= |Og‘Wf;‘/t, A1 > > s Mg

° P()\l, cee ,)\d|t) X exp (71’5()\17 000 ,)\d))
o S(---) — Créamer function

Michael (Misha) Chertkov chertkov@arizona.edu Applied Math of Scientific & Artificial Intelligence



Multiplicative Noise
Thermal Control of Buildings
Predict & Prevent Against Rare Events [ ] Fat (Algebraic) Tails & Synthesis

Active & Passive Swimmers

@ u — control exerted by an active swimmer:
o keep in-sight

@ o(t) — fluctuating velocity gradient in “Batchelor" flow
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Dynamics of Temperature in Multi-Zone Buildings

9L —co(T — To) — cs(T — Ts)u(t) + £(t) [as seen from a zone]

Window —*  RhirFlaw @ Damper
T e Cousing - EE e vor @ u(t) — control of the AHU opening
Rieturm Air
= @ Linearizing around “comfort"

temperature/efforts
o 0= _QQ(I - To) - Cs(I - Ts)ﬂ
e ¢, =c,+a(t)
o u(t)=u+ @0 (+ linear

Cutsicn
A

Supply
Fan

Mized  Celling
Alr ol

| AHU unit

I feedback)
atun Ak o 0 == T — I
| o % = _c(p)0+E(t) - o(t)6
° T.o-out5|dfe and Ts- e c(¢) = co+c1¢,co = c,+csu, c1 =
Air-Handling-Unit (AHU) cs(T — Ty), E(t) = £(t) + Too(t)

@ ¢, and ¢ exchange rates
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Dynamics of Temperature in Multi-Zone Buildings

Network (of zones) Generalization

|__:~_ L.H -

Heanng Hat W

eobrd W vl

Rt Air Pflain Dusc

B

|
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White-Gaussian-Multiplicative: Fokker-Planck

@ Multiplicative Noise = White Gaussian
o State Feedback Control: u(t) — w(x(t)) [prescribed]

o = Fokker-Planck:
(0 (wi(x) 4+ myx;) + KijOxOx; 4 DikjiO xicOxx1) P(x|w) =0

Steady State Control

¢* = arg mqin C((;S), (f((j’)) = /de(x\wd,)C(x, wg)
Clx,wy) = Co(wy) + Ce(x)

N a7

cost of control  cost of achieving the goal, e.g.(xxT)d/2
J

Consider Examples ...
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Thermal Control (single zone)

Linear feedback, M-noise short correlated
Fokker-Planck — solution — optimal

o (9pc(d)0 + k02 + D(940)%) P(6]¢p) = O
c(¢)

F(MFI) 2 _%_ 2D

o P(O|gp)=1/ 22222/ (14 D8

( ‘ ) \/; F(%) ( K )

o MgP-stable at ¢ > ¢(S) = (D(max(q,2) — 1) — c0)/c1.
e optimal: ¢* = 2’3*"*\/(2619*Coﬁﬁcl2

A\
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General Model: Synthesis

Linear feedback: u;(t) — >_; ¢jx;

x(t) = exp(—(m + ¢)t) W(t)X,

X stabilizes to a constant as t grows

log Pst(xF.T) oc 2f; (m + ¢) £ S”(0) log X)%

e 6 o6 o

Dependence on X is “under logarithm" — thus weak and
replaced by x4

Statistics of any norm of x is equivalent to statistics of (xf")
associated with the largest Lyapunov exponent

use white multiplicative noise

@ when control is slower than 1/)\;
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Conclusions & Path Forward

Analyzed linear dynamic system driven by additive and
multiplicative noise, stabilized by feedback

©

o = Algebraic = fat tail (when stabilized).

o Examples, e.g. on Thermal Control of Buildings but also in
Fluid Mechanics

o Extend to complex cases, e.g. multi-zone engineered systems
@ Towards data driven approaches,
e.g. via physics-informed reinforcement learning (hierarchy of
models taking advantage of the multiplicative+additive theory)
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Support is Appreciated !!

o Energy Systems:
UArizona start up +
DOE/ARPA-E +
NSF /RareEvents

Thanks for your attention |
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Research focused, since 1976, one of US first Ph.D. in m

Applied Math [dynamical, integrable systems, turbulence] http://appliedmath.arizona.edu/

Interdisciplinary: 100+ professors/ 26 departments/ 8 chertkov@arizona.edu
colleges across UA campus (CoS & CoE & Optics — top 3)

Mixing traditional @ contemporary Applied Math

64 Ph.D students (14/12/13/16/10 in 2023/22/21/20/19)

3 Core Courses (1% year -- Methods, Analysis, Algorithms)
https://appliedmath.arizona.edu/students/new-core-courses

5 seminar/colloquium series — recorded and posted online

Pipeline to National Labs (e.g. LANL, LLNL, NREL,
PNNL, SNL, NNSS) and Industry (e.g. Raytheon, Rincon,
Uber, Intel, Critical Path) via internships & co-advising

PROGRAM IN

SUX —
Looking for new partnership in Applied Math for AT A’ PLl ED MATH EMATl cs
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