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Power System Learning 

Motivation 

– Interpretations about Causalities via ‘Mimicking’ physics 
– Implanting Learning into Optimization models =⇒ Closed-Form 

Decision Making Problem 

Input 

Objective 

Power Flow 
Equation Set 

Physical/Operational 
Constraints 

Output 

Learning of : Optimization Proxy 

Learning of : Active Set/Feasible Space Learning 

A Closed-form Power Flow (CFPF) Framework for Power Balance Equations 
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Motivation 

Motivation for Physics-Informed Learning for Power Flow 

Net Power Injection Complex Voltage X † † †
Power Flow: =⇒ Si = Y (viv − viv )ij i j 

j∈N Network Parameter 

Power fow equation set allows to obtain the complex voltage values at each network node, given the power 
injection at each node. 

A Closed-form Power Flow Approximation Framework which gives 

– Flexible Forms =⇒ Non-linear forms with complexity-accuracy trade-of 

– Easy to Evaluate Forms =⇒ Faster numerical calculations 

– Non-parametric Forms =⇒ Works within a power injection range or hypercube 

– Differentiable Forms =⇒ Can be fed into optimization problems 

– Interpretable Forms =⇒ Should provide insights into physical system 

Essentially an explicit expression of voltage as a function of power injection is needed 
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Power Flow Approximation: Analytical Form 

CFPF Learning Mechanism 

Training 
Training Set {S, V̂ 

j }Subspace 

Prior Knowledge 

	

Kernel Selection 
CFPF Learning 

Vj (s) 

T 2 −1 bMean : E[f(s)] = Vj (s) = k [K + σϵ I] Vj 

2 T 2 −1Variance : σ [f (s)] = k(s, s) − k [K + σϵ I] k 

Training Data– 
� 
S, Vb 

j ; N Samples Design Matrix– 
S = [s 1 . . . s i . . . s N ] 

– s i is i-th power injection vector 

Target Vector– Vb 
j = [Vj 

1 . . . Vj
N ] Power Flow as a 

Function: 

bVj = f (s) + ϵ 

Gaussian Process (GP) function view [1] 

� � 
f(s i) ∼ GP 0, k(s i , sj ) 

Zero Mean Kernel Function 

Learn the kernel hyper-parameters using maximum 
log-likelihood 

CFPF provides mean prediction of voltage and confdence in that prediction 
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CFPF: Forms 
Training Data � � 

Vj (s) = k(s1 , s) . . . k(sN , s) αj 

Variable s = [p; q] Constant 

How Do Forms Look Then? 

Simple, Standard Forms 

– Linear: v = As + b – Quadratic: Vj (s) = sT Ms + mT s + r 

More Complex but Accurate Forms 

NX 
Vj (s) = αj (i)β

i 

i=1 

� � 

where, βi = τ 2 exp −∥s i − s∥2/2ℓ2 : Gaussian Kernel 

P. Pareek and H. D. Nguyen “A Framework for Analytical Power Flow Solution using Gaussian Process Learning”, IEEE 
Trans. on Sustainable Energy, Vol.13 (1), Jan 2022. 
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Model Interpretability via Hyper-parameters

Independent from Network Type
Assumptions

CFPF: Features (& Reasons of using Gaussian Process) 

Subspace-wise Approximations & Non-Parametric 

Non-parametric Nature 
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Time for Our ‘Not So’ Favorite Issues 

Curse-of-Dimensionality 
Exact inference has complexity N3 with N training samples 
Sample requirement tends to grows exponentially with size of system 
So, with all loads varying, we cannot apply exact inference 

Mesh Network Flows 
Not so rigid patters as in radial with single source 
Injection-voltage relationship is not direct 
Chances of non-linearity beyond quadratic is higher 

Limited Explainability and Use 
Relative efect of node or cluster of nodes is hard to analyze 
Full GP is restrictive in use within Bayesian Optimization 
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An Ideal Situation Would be 

A high-dimensional voltage function is breakable into low-dimensional sub-functions 

Learn individual low-dimensional sub-function and combine 
Lower Curse-of-Dimensionality 

Capturing localized voltage-injection relationship will be easier 
Suitable for Mesh Network Flows 

Better understanding of impact of a smaller set of injections a voltage 
Improved Explainability & Interpretability 

Low-dimensional GPs are perfect ft for active learning 
Useful as surrogate in Bayesian optimization approach 

Vj (s) = Vj 
1(s1) + · · · + V m(sm)j 

≡ GP1(0,K1(s1, ·)) + · · · + GPm(0,Km(sm, ·)) 
≡ Additive Gaussian Process 
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Additive Gaussian Process 

= 
′ ′ ′ ′ k1(x1, x 1) k2(x2, x 2) k1(x1, x 1) + k2(x2, x 2) 

1-D Kernel 1-D Kernel Additive Kernel 

↓ ↓ ↓ 

= 

f1(x1) f2(x2) f1(x1) + f2(x2) 
1-D GP Prior 1-D GP Prior Additive GP Prior 
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Using Graph-structure to Achieve Additive GP Architecture 

– Neighboring power injections have highly correlated efect on node voltages 

– Efect of far away power injections is approximately equal to sum of individual efects 

1 

3 

2 

12 

11 

4 

5 

8 

6 

k1([s1; s2; s3], ·) 

k2([s1; s2; s12], ·) 

k3([s1; s3; s5; s12], ·) 
k5([s3; s4; s5; s6; s8; s11], ·) 

k12([s2; s3; s4; s7; s11; s12; s16; s117], ·) 

si = [pi; qi] 

|B|X 

Number of Nodes Power Injection Vectors 

i i jkv (s , sj ) = kb(xb, x ) 
b=1 

b

Node Neighborhood Kernel 
Neighborhood Aggregated Injection Vectors 
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More of Vertex Degree Kernel (VDK) 

Target Node Voltage 

V1(s) = V11(x1) + · · · + V1|B|(x|B|)| {z } 
Latent Node Voltage Functions 

Features 
Dimension Reduction: Maximum kernel dimension is equal to maximum vertex degree 

Neighborhood Correlation: Aggregated vectors capture correlated injection efects 

Constant Kernel Structure: No redesign needed for a constant network structure 

Size Reduction via Reduced VDK Representation 
k42(x

41 

42

43 

44

42, ·) x41 ⊊ x42 

x43 ⊊ x44 System† 

k41(x41, ·) x43 ⊊ x42 118-Bus 
500-BusRedundant Kernels: k41 & k43 

k44(x43, ·) 1354-Bus 
† 

Reduced VDK 
97 
238 
786 

Reduction 
17.7% 
52.4% 
41.9% 

VDK size is equal to system size i.e. |B| 
Idea of VDK reduction by removing proper subsets. 
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Active Learning 

What: Learning by successively selecting the next training point ‘intelligently’ 

Why: To speed-up the learning process using unlabeled data i.e. only input data needed =⇒ Low 
Sample Complexity =⇒ Less Power Flow Samples Needed 

Concept: Next training point is the one which has maximum information of underlying function 

t+1 s = arg max 
s∈L 

σt 
f (s) → Only Function Evaluation 

σt 
f (s) Submodular Function 

Greedy Optimization 1 − 1/e Approximation 

Finding maximum variance point for large-dimensional input 
space is hard 

=⇒ Used mostly up to 20-dimensions 
=⇒ Power systems have 100s of uncertain power injections 
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Network-swipe Active Learning 

" |B| #T " #|B| X |B| X X 
Variance: σ2[f(s)] = kb(xb, xb) − kb(Xb, xb) [K1 + · · · + K|B|]

−1 kb(Xb, xb)| {z }b=1 b=1b=1| {z } Constant Matrix | {z } 
Constant Variable Vector 

Neighborhood Aggregated Injection Vectors xb’s have Overlap 

3 

1 

2 

12 

t+1 t+1 t xb = arg max σf
t (xb , xbDi , xb )� � Di D1...i−1 Di+1...d 

t+1 t+1 t+1 t b ∈Li[s ; s ; s ] = arg max σt xbD1 , xb xDi
1 2 3 f D2...d| {z } s1,s2,s3 

t+1 xb xbDi = {sj |sj ∈ xDi and sj ∈/ xDi ∀ j < i}
D1 � � t+1 t+1 t+1 t[s ; s ] = arg max σt xb , xbD2 , xb5 12 f D1 D3...d| {z } s5,s12 

xbt+1 

· 

D2 

5 · · · · · · · · · · · · · · · · · 

Idea of network-swipe algorithm for AL. 

P. Pareek, D. Deka, and S. Misra, “Graph-Structured Kernel Design for Power Flow Learning using Gaussian Processes”. 
Arxiv.2308.07867 
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Benchmarking 

500 independent trials with 100 training samples; Testing: 1000 unique samples 

V1 within ±10% hypercube for 500-Bus system. V1 within ±10% hypercube for 118-Bus system. 

Three Times Lower Sample Complexity 50% Lower Error & 100 Times Confdent Model 

Proposed VDK-GP outperforms a 3-layer, Node 

1000-neuron Deep Neural Network for using 100 1 
training samples in 118-Bus system 43 

117 

MAE (pu) 
Proposed 

5.22 × 10−5 

8.70 × 10−5 

2.26 × 10−5 

DNN 
1.89 × 10−4 

9.77 × 10−4 

9.05 × 10−4 

Accurate, loading independent power fow model with extremely low sample complexity 
Useful for power system operation under uncertainty 
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Active Learning Performance: 118-Bus System 

(a) MAE (pu) over 1000 testing samples. (b) MPV (pu) over 1000 testing samples. 

Learning Method (Training Samples) 
Full GP (100) VDK-GP (100) AL (100) 

MAE ×10−5 3.98 2.66 1.72 
ME ×10−5 17.1 11.5 6.98 

#ACPF Samples 5×104 5×104 100 
– Full GP & VDK-GP: Mean over 500 random trails 

Network-swipe is successful in achieving near smooth decay in Variance 
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1354-Bus portion of European transmission system 

1,354-buses, 260 generators, and 1,991-branches and it operates at 380 and 220 kV. 
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Active Learning Performance: Larger Systems 

Learning V5 for 1354-Bus system. 

Learning V1 for 500-Bus system. 

MAE ×10−5 

ME ×10−5 

#PF 

Learning Method (Training Samples) 
Full GP 
(300) 
5.22 
22.4 

15×104 

VDK-GP 
(100) 
5.35 
23.3 

5×104 

Learning Method (Training Samples) 
Full GP (200) VDK-GP (100) AL (100) 

#PF 100AL 5000 2500 
– #PF: Total number of ACPF solutions required(100) 

2.68 
11.0 
100 A random trial of active learning is better than 

large number of passive learning attempts. – Full GP & VDK-GP: Mean over 500 random trails 
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More Insights: Extrapolation & Depth Efect 

Efect of depth on learning quality of three diferent Extrapolation of VDK-GP model trained within ±10% 
voltage function in 500-Bus system.hypercube for 118-Bus system. 
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Summary: Till Now & Next? 

Key Take Away 

Through Application Specifc Physics-inspired Kernels, GPs can be Excellent Interpretable 
Learning Tools in Low Data Regimes. 

What Closed-forms Are Useful For? 
Large scale power fow learning [2] 

Uncertainty Quantifcation and Behavior Characterization [3] 

Privacy-preserving Probabilistic Feasibility Assessment [4] 

Voltage Control with Linear Forms under Uncertainty [5] 

Optimal Power Flow Proxy [6] 

Locating Critical Nodes in Distribution Systems [7] 

What’s Next? 
Learning Power Flow under Topological and Injection Uncertainties : Next Week 

GPU Trainable Models of Full GP and VDK-GP for Power Flow : Later This Month 
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