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% Challenges of Dynamical Systems
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« Simulations are crucial for many areas of decision-making
and scientific discovery

* Need: Improve computational efficiency and scalability for
heterogenous scientific simulations
« Challenges:
» Physically-consistent data-driven modeling

= Fast simulation of complex systems
= Optimal control and design of complex systems

 Emerging solution:
= Scientific Machine Learning connecting physics and Al domains

Latest Neural Nets Solve World’s Hardest
Equations Faster Than Ever Before

LZ-Quantamacazine
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Constrained optimization Differential equations Supervised Learning Reinforcement Learning
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Constrained optimization Differential Equations Supervised Learning Reinforcement Learning
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Online optimization Differential Equations Supervised Learning Reinforcement Learning

V7pyomo O O PyTorch

DifferentialEquations.jl
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What comes next? ... Differentiable programming (DP): a unifying approach for data-
driven modeling and optimization of complex systems based on automatic differentiation (AD)
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» Differentiable Programming
= M. Innes, et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing,
2019
Physics-informed Neural Networks

= M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, 2019

Neural Differential Equations
» R.T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
= C. Rackauckas , et al., Universal Differential Equations for Scientific Machine Learning, 2021

Differentiable Optimization
= A.Agrawal, et al., Differentiable Convex Optimization Layers, 2019
= P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021
= S. Gould, et al., Deep Declarative Networks: A New Hope, 2020
= J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021

Differentiable Control
= B. Amos, et al., Differentiable MPC for End-to-end Planning and Control, 2019
= S. East, et al., Infinite-Horizon Differentiable Model Predictive Control, 2020
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1. Mathematical formulation
min (1 —x)* + p(y —x%)
st (p/2)? <x*+y?<p’, x>y
x = mo(p)

2. Python code interface

import neuromancer as nm

p = nm.
X = nm.
y = nm.

obj = ((1-x)**2 + p*(y-x** ).minimize(
cl (p/ )** <= X** + y**

c2 = x¥*2 4+ y** <= p**

c3 X >=

net = =2,
map = nm. =['p’]

loss = nm. ([obj], [c1, c2, c3])

problem = nm. ([map], loss)

optimizer = torch.optim.AdamW(problem.parameters())
trainer = nm. (problem,data,optimizer)

best model = trainer.train()

3. Problem graph

primahpgnap
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4. Results

Closed-loop control trajectories
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Imitation Learning Differentiable Parametric Programming
Nanral Netwisrk . - or, Constrained Deep Learning, End-to-end NN
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Component-based Physics-informed Machine Learning Physics-Informed Neural Networks

PDE L(u(x,t),0) = g

Networked Dynamical systems
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Trajectory optimization and obstacle avoidance
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Learning constrained model-based control policies Learning stabilizing controllers
with differentiable control methods ;
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Learning Neural Lyapunov Functions

Closed-loop control trajectories
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Open-source scientific machine learning (SciML)
toolbox in PyTorch for integrating deep learning,
constrained optimization, and physics-based modeling

Physics-informed machine learning

Data-driven modeling of dynamical systems

Model-based policy optimization

Parametric constrained optimization

github.com/pnnl/neuromancer
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https://github.com/pnnl/neuromancer
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