

Neuromancer:
Differentiable Programming

Library for Modeling, Control,
and Optimization

The Sixth Autonomous Energy Systems,
NREL Workshop, Golden, CO

September 18, 2023

Ján Drgoňa

Core developers: Aaron Tuor, James Koch, Madelyn
Shapiro, Draguna Vrabie

Challenges of Dynamical Systems
Modeling and Control

• Simulations are crucial for many areas of decision-making
and scientific discovery

• Need: Improve computational efficiency and scalability for
heterogenous scientific simulations

• Challenges:
• Physically-consistent data-driven modeling
• Fast simulation of complex systems
• Optimal control and design of complex systems

• Emerging solution:
• Scientific Machine Learning connecting physics and AI domains

2

Landscape of Solution Methods

Constrained optimization Differential equations Supervised Learning Reinforcement Learning

• Requires prior knowledge
of objective function and

constraints

• Requires prior knowledge of
the physics to be modeled

• Requires large labeled • Requires environment
datasets model to sample

More domain Less domain
knowledge knowledge

Landscape of Solution Tools
Constrained optimization Differential Equations Supervised Learning Reinforcement Learning

More domain Less domain
knowledge knowledge

Landscape of Solution Tools
Online optimization Differential Equations Supervised Learning Reinforcement Learning

What comes next? … Differentiable programming (DP): a unifying approach for data-
driven modeling and optimization of complex systems based on automatic differentiation (AD)

Differentiable Programming Enables
Scientific Machine Learning

• Differentiable Programming
• M. Innes, et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing,

2019

• Physics-informed Neural Networks
• M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and

inverse problems involving nonlinear partial differential equations, 2019

• Neural Differential Equations
• R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
• C. Rackauckas , et al., Universal Differential Equations for Scientific Machine Learning, 2021

• Differentiable Optimization
• A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
• P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021
• S. Gould, et al., Deep Declarative Networks: A New Hope, 2020
• J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021

• Differentiable Control
• B. Amos, et al., Differentiable MPC for End-to-end Planning and Control, 2019
• S. East, et al., Infinite-Horizon Differentiable Model Predictive Control, 2020

6

NeuroMANCER: a Scientific Machine Learning Library

1. Mathematical formulation

2. Python code interface 4. Results

3. Problem graph

map

import neuromancer as nm

p = nm.variable(‘p’)
x = nm.variable(‘x’)
y = nm.variable('y’)

obj = ((1-x)**2 + p*(y-x**2)**2).minimize(weight=1.0, name='obj’)
c1 = (p/2)**2 <= x**2 + y**2
c2 = x**2 + y**2 <= p**2
c3 = x >= y

net = nm.MLP(insize=2, outsize=2, hsizes=[80]*4)
map = nm.Node(net, input_keys=['p’], output_keys=[‘x’,‘y’])

loss = nm.PenaltyLoss([obj], [c1, c2, c3])
problem = nm.Problem([map], loss)
optimizer = torch.optim.AdamW(problem.parameters())
trainer = nm.Trainer(problem,data,optimizer)
best_model = trainer.train() 7

Parametric Constrained Optimization Capabilities
in Neuromancer

Training neural networks as explicit solutions Feasibility restoration with implicit layers

8

Data-driven Modeling Capabilities in Neuromancer

Component-based Physics-informed Machine Learning Physics-Informed Neural Networks

Networked Dynamical systems Neural differential equations

9

Optimal Control Capabilities in Neuromancer

Learning constrained model-based control policies Learning stabilizing controllers
with differentiable control methods

Trajectory optimization and obstacle avoidance Learning Neural Lyapunov Functions

10

NeuroMANCER
Open-source scientific machine learning (SciML)
toolbox in PyTorch for integrating deep learning,
constrained optimization, and physics-based modeling
• Physics-informed machine learning
• Data-driven modeling of dynamical systems
• Model-based policy optimization
• Parametric constrained optimization

github.com/pnnl/neuromancer

11

https://github.com/pnnl/neuromancer

Acknowledgements

Aaron Tuor James Koch Madelyn Shapiro Stefan Dernbach Christian M. Legaard

Wenceslao Shaw Cortez Ethan King Shrirang Abhyankar Mahantesh Halappanavar Draguna Vrabie

12

