

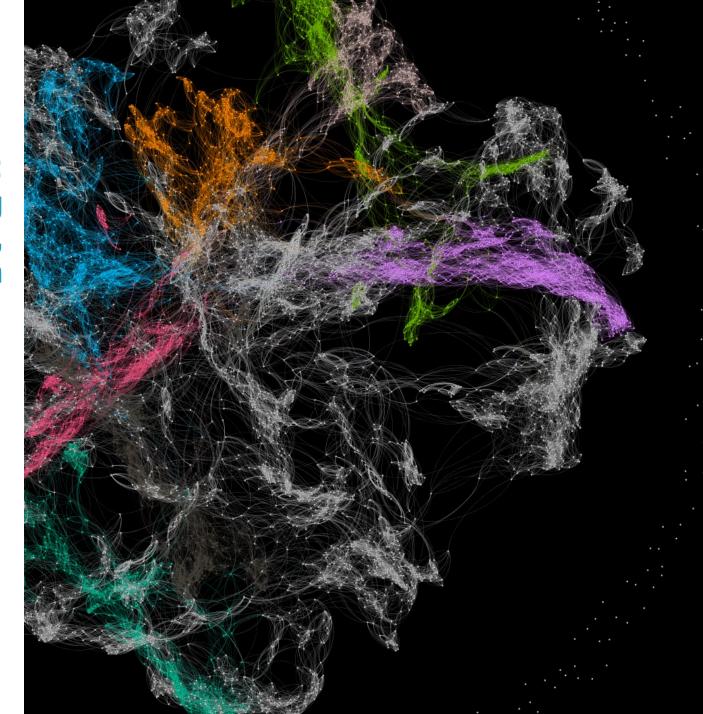
Neuromancer: Differentiable Programming Library for Modeling, Control, and Optimization

The Sixth Autonomous Energy Systems, NREL Workshop, Golden, CO

September 18, 2023

Ján Drgoňa

Core developers: Aaron Tuor, James Koch, Madelyn Shapiro, Draguna Vrabie



Challenges of Dynamical Systems Modeling and Control

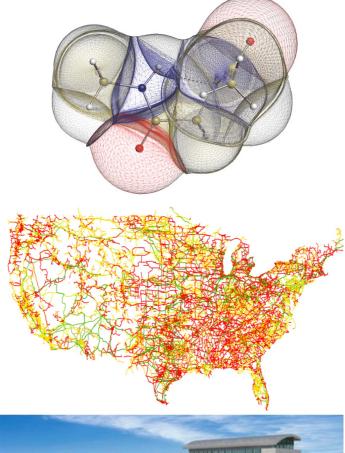
- **Simulations** are crucial for many areas of decision-making and scientific discovery
- **Need**: Improve computational efficiency and scalability for heterogenous scientific simulations
- Challenges:

Pacific

Northwes

- Physically-consistent data-driven modeling
- Fast simulation of complex systems
- Optimal control and design of complex systems
- Emerging solution:
 - Scientific Machine Learning connecting physics and AI domains

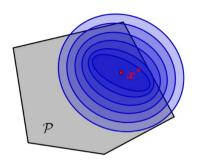
Latest Neural Nets Solve World's Hardest Equations Faster Than Ever Before



Landscape of Solution Methods

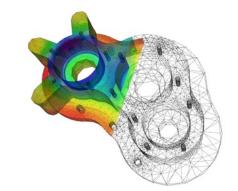
Constrained optimization

 $egin{array}{c} \min_x & f(x) \ ext{subject to} & b(x) \geq 0 \ & c(x) = 0. \end{array}$



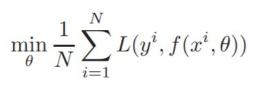
Requires prior knowledge of objective function and constraints Differential equations

 $rac{dy}{dx} = f(x)$

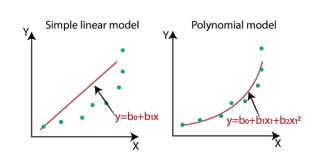


Requires prior knowledge of the physics to be modeled

 Requires large labeled datasets



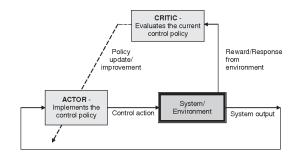
Supervised Learning



Reinforcement Learning

$$\min_{\Theta} \sum_{i=1}^{m} \mathbf{r}(\mathbf{x}, \Theta)$$

s.t. **Bellman**(\mathbf{x}, Θ) = **0**,
environment(\mathbf{x}, Θ) = **0**
 $\mathbf{x} \in \Xi$



 Requires environment model to sample

More domain knowledge

Less domain knowledge

Landscape of Solution Tools

Constrained optimization

Differential Equations

📣 MATLAB®

■PETSc ▲ ▲ TAO

More domain knowledge

Supervised Learning

Reinforcement Learning

Less domain knowledge

Landscape of Solution Tools

Differential Equations Online optimization Supervised Learning Reinforcement Learning PYOMO **O** PyTorch JUMP DifferentialEquations.jl TensorFlow MATLAB® GEHHO **SciPy flux CVXPY ■PETSc ▲▲**TAO CasADi Gym **NWCHEM GUROBI** OPTIMIZATION

What comes next? ... Differentiable programming (DP): a unifying approach for datadriven modeling and optimization of complex systems based on automatic differentiation (AD)

Pacific Northwest

Differentiable Programming Enables Scientific Machine Learning

Differentiable Programming

 M. Innes, et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing, 2019

Physics-informed Neural Networks

 M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, 2019

Neural Differential Equations

- R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
- C. Rackauckas, et al., Universal Differential Equations for Scientific Machine Learning, 2021

Differentiable Optimization

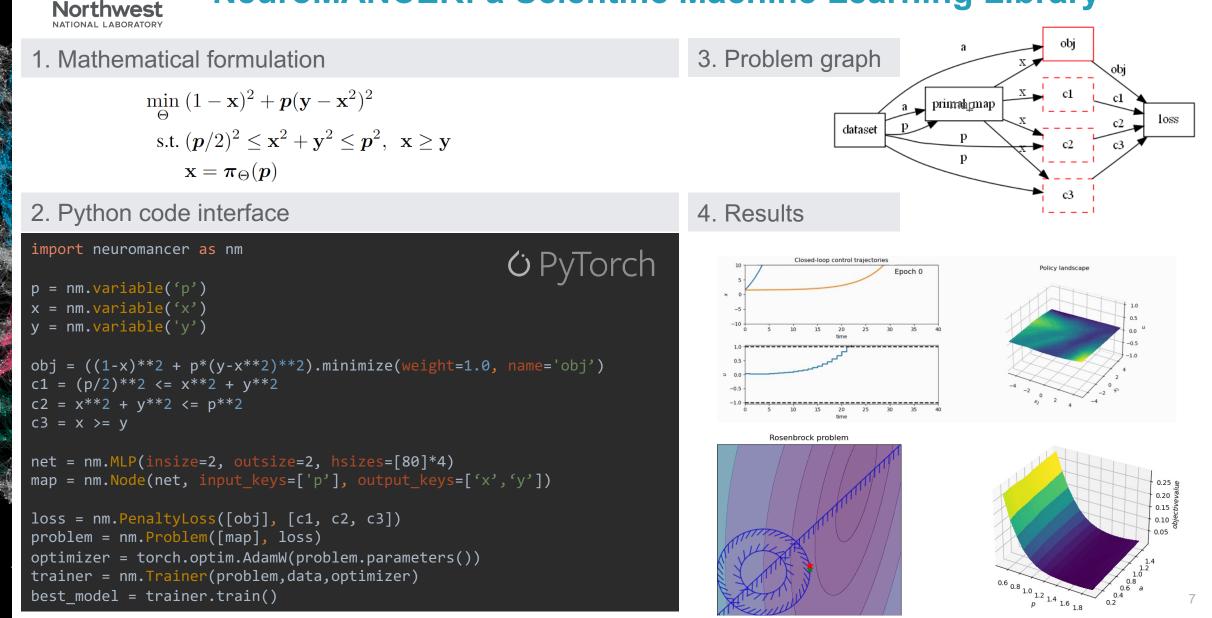
- A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
- P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021
- S. Gould, et al., Deep Declarative Networks: A New Hope, 2020
- J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021

Differentiable Control

- B. Amos, et al., *Differentiable MPC for End-to-end Planning and Control*, 2019
- S. East, et al., Infinite-Horizon Differentiable Model Predictive Control, 2020

NeuroMANCER: a Scientific Machine Learning Library

Pacific

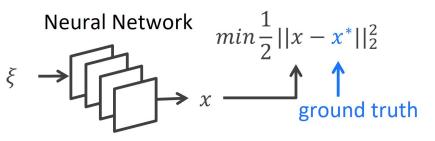


Parametric Constrained Optimization Capabilities in Neuromancer

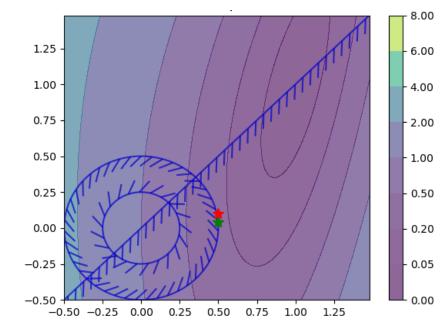
Imitation Learning

Pacific

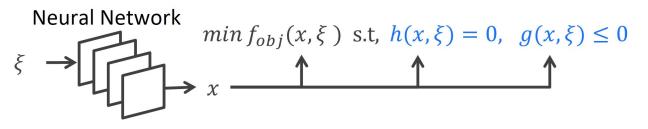
Northwes



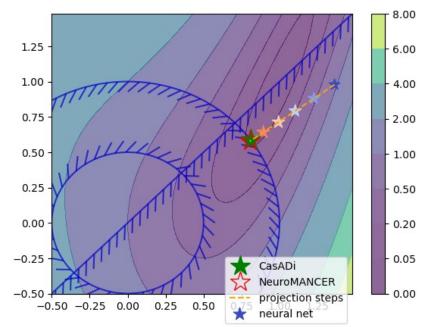
Training neural networks as explicit solutions



Differentiable Parametric Programming or, Constrained Deep Learning, End-to-end NN



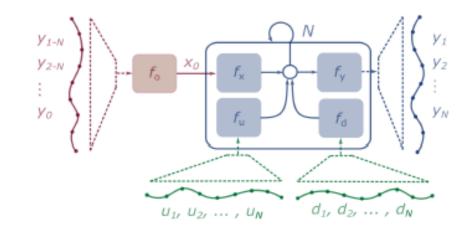
Feasibility restoration with implicit layers



8

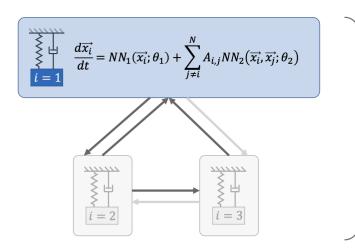
Data-driven Modeling Capabilities in Neuromancer

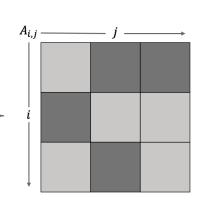
Component-based Physics-informed Machine Learning



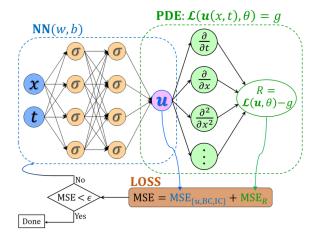
Networked Dynamical systems

Pacific Northwest

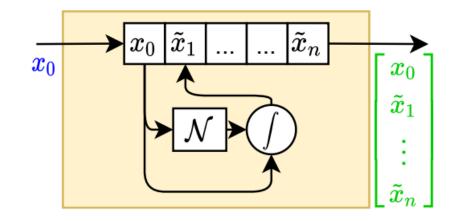




Physics-Informed Neural Networks



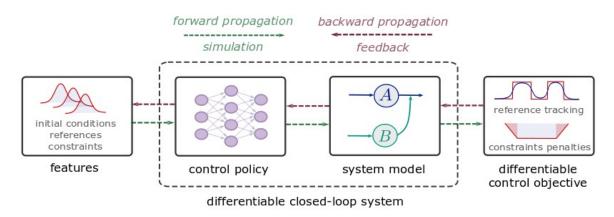
Neural differential equations



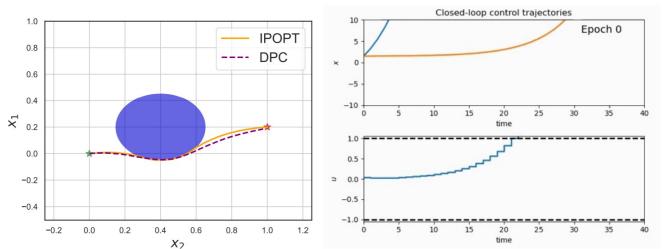
9

Pacific Northwest	Optimal	Control	Capabilities	in	Neuromance
NATIONAL LABORATORY					

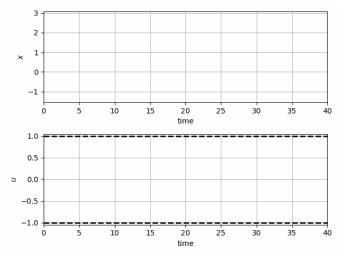
Learning constrained model-based control policies with differentiable control methods



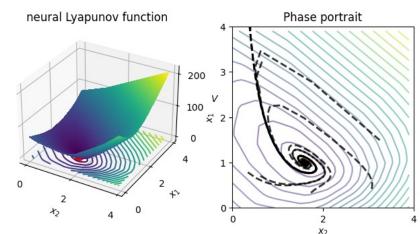
Trajectory optimization and obstacle avoidance



Learning stabilizing controllers



Learning Neural Lyapunov Functions



10

NeuroMANCER

Open-source scientific machine learning (SciML) toolbox in PyTorch for integrating deep learning, constrained optimization, and physics-based modeling

- Physics-informed machine learning
- Data-driven modeling of dynamical systems
- Model-based policy optimization
- Parametric constrained optimization

github.com/pnnl/neuromancer

Acknowledgements

Aaron Tuor

James Koch

Madelyn Shapiro

Stefan Dernbach

Christian M. Legaard

Wenceslao Shaw Cortez

Ethan King

Shrirang Abhyankar

Mahantesh Halappanavar

Draguna Vrabie

