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Challenges of Dynamical Systems
Modeling and Control 

• Simulations are crucial for many areas of decision-making 
and scientific discovery 

• Need: Improve computational efficiency and scalability for 
heterogenous scientific simulations 

• Challenges: 
• Physically-consistent data-driven modeling 
• Fast simulation of complex systems 
• Optimal control and design of complex systems 

• Emerging solution: 
• Scientific Machine Learning connecting physics and AI domains 
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Landscape of Solution Methods 

Constrained optimization Differential equations Supervised Learning Reinforcement Learning 

• Requires prior knowledge 
of objective function and 

constraints 

• Requires prior knowledge of 
the physics to be modeled 

• Requires large labeled • Requires environment 
datasets model to sample 

More domain Less domain 
knowledge knowledge 



    

   

Landscape of Solution Tools 
Constrained optimization Differential Equations Supervised Learning Reinforcement Learning 

More domain Less domain 
knowledge knowledge 



    

          
        

Landscape of Solution Tools 
Online optimization Differential Equations Supervised Learning Reinforcement Learning 

What comes next? … Differentiable programming (DP): a unifying approach for data-
driven modeling and optimization of complex systems based on automatic differentiation (AD) 



   
   

             

          
     

        
        

 
       
            
         
      

      
        

Differentiable Programming Enables 
Scientific Machine Learning 

• Differentiable Programming 
• M. Innes, et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing, 

2019 

• Physics-informed Neural Networks 
• M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and 

inverse problems involving nonlinear partial differential equations, 2019 

• Neural Differential Equations 
• R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019 
• C. Rackauckas , et al., Universal Differential Equations for Scientific Machine Learning, 2021 

• Differentiable Optimization 
• A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019 
• P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021 
• S. Gould, et al., Deep Declarative Networks: A New Hope, 2020 
• J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021 

• Differentiable Control 
• B. Amos, et al., Differentiable MPC for End-to-end Planning and Control, 2019 
• S. East, et al., Infinite-Horizon Differentiable Model Predictive Control, 2020 
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NeuroMANCER: a Scientific Machine Learning Library 

1. Mathematical formulation 

2. Python code interface 4. Results 

3. Problem graph 

map 

import neuromancer as nm 

p = nm.variable(‘p’) 
x = nm.variable(‘x’) 
y = nm.variable('y’) 

obj = ((1-x)**2 + p*(y-x**2)**2).minimize(weight=1.0, name='obj’) 
c1 = (p/2)**2 <= x**2 + y**2 
c2 = x**2 + y**2 <= p**2 
c3 = x >= y 

net = nm.MLP(insize=2, outsize=2, hsizes=[80]*4) 
map = nm.Node(net, input_keys=['p’], output_keys=[‘x’,‘y’]) 

loss = nm.PenaltyLoss([obj], [c1, c2, c3]) 
problem = nm.Problem([map], loss) 
optimizer = torch.optim.AdamW(problem.parameters()) 
trainer = nm.Trainer(problem,data,optimizer) 
best_model = trainer.train() 7 



    

      

Parametric Constrained Optimization Capabilities
in Neuromancer 

Training neural networks as explicit solutions Feasibility restoration with implicit layers 
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Data-driven Modeling Capabilities in Neuromancer 

Component-based Physics-informed Machine Learning Physics-Informed Neural Networks 

Networked Dynamical systems Neural differential equations 
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Optimal Control Capabilities in Neuromancer 

Learning constrained model-based control policies Learning stabilizing controllers 
with differentiable control methods 

Trajectory optimization and obstacle avoidance Learning Neural Lyapunov Functions 
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NeuroMANCER 
Open-source scientific machine learning (SciML)
toolbox in PyTorch for integrating deep learning, 
constrained optimization, and physics-based modeling 
• Physics-informed machine learning 
• Data-driven modeling of dynamical systems 
• Model-based policy optimization 
• Parametric constrained optimization 

github.com/pnnl/neuromancer 
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https://github.com/pnnl/neuromancer
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