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The What and the Why? 
Please ask questions! 

The What? Interacting particle system as an algorithm 

PLANT 

Inter. particle
system

data
estimate

control

(Algorithm)

Example of an interacting particle system: Kuramoto oscillators 

Example of an algorithm: particle filter 
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The What and the Why? 
Please ask questions! 

The What? Interacting particle system as an algorithm 

PLANT 

Inter. particle
system

data
estimate

control

(Algorithm)

The Why? 

Applicable to general class of models 
1 

2 

nonlinear, non-Gaussian 
even simulation models 

Possible benefits in high-dimensional settings 

An over-looked topic (may be?) in Control Theory (but important in related fields) 
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1 

2 
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Outline 
I will focus on algorithms for the estimation problem 

Kalman filter 

Ensemble Kalman filter ⇐= An interacting particle system 

Feedback particle filter 

Learning and optimal control ⇐= Only a movie! 
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Key takeaway 
Please ask questions! 

Estimation algorithm is a feedback control law: 

[control] = [gain] · [error] (proportional control) 
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Key takeaway 
Please ask questions! 

Estimation algorithm is a feedback control law: 

[control] = [gain] · [error] (proportional control) 

The question: What is the gain? 

Answer: Solution to an optimization problem. 

Seems appropriate given all the Optimization talent in the room! 
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Bayesian Inference/Filtering 
Mathematics of prediction: Bayes’ rule 

Signal (hidden): X X ∼ P(X) (prior) 
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Problem: What is X ? 
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Bayes’ rule: P(X|Y)| {z }
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Prior 
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Bayesian Inference/Filtering 
Mathematics of prediction: Bayes’ rule 

Signal (hidden): X X ∼ P(X) (prior) 

Observation (known): Y Y ∼ P(Y|X) (sensor model) 

Problem: What is X ? 

Solution 

Bayes’ rule: P(X|Y)| {z }
Posterior 

∝ P(Y|X) P(X)| {z }
Prior 

Key takeaway: Bayes’ rule ≡ proportional ([gain] · [error]) control! 
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Classical Applications 
Target state estimation 
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Posterior is an information state

P(Xt ∈ A|Zt) =
Z

A
p(x, t)dx

E(f (Xt)|Zt) =
Z
R

f (x)p(x, t)dx

P. G. Mehta

Nonlinear Filtering 
Mathematical Problem 

Signal model: dXt = a(Xt) dt + σB(Xt)dBt, X0 ∼ p0(·) 

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering. Springer, 2010. 
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Mathematical Problem 

Signal model: dXt = a(Xt)dt + σB(Xt)dBt, X0 ∼ p0(·) 

Observation model: dZt = h(Xt) dt + dWt 

d 
or if you prefer Yt := Zt = h(Xt) + white noise 

dt 

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering. Springer, 2010. 
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Kalman filter 

Ensemble Kalman filter 

Feedback particle filter 
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Filtering problem: Linear Gaussian setting 

Model: 

Signal process: dXt = AXt dt + σB dBt (linear dynamics) 

Observation process: dZt = HXt dt + dWt (linear observation) 

Prior distribution: X0 ∼ N (m0,Σ0) (Gaussian prior) 

Problem: Find conditional probability distribution, P(Xt|Zt) 

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory (1961). 
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Filtering problem: Linear Gaussian setting 

Model: 

Signal process: dXt = AXt dt + σB dBt (linear dynamics) 

Observation process: dZt = HXt dt + dWt (linear observation) 

Prior distribution: X0 ∼ N (m0,Σ0) (Gaussian prior) 

Problem: Find conditional probability distribution, P(Xt|Zt) 

Solution: Kalman-Bucy filter – P(Xt|Zt) is Gaussian N (X̂t,Σt) 

Update for mean: dX̂t = AX̂t dt + Kt ( dZt − HX̂t dt)| {z }
error 

dΣt
Update for covariance: = Ric(Σt) (Riccati equation) 

dt 

Kalman gain: Kt := ΣtH> 

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory (1961). 
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Problems and research directions 

Classical settings: additional issues due to 
uncertainties in the signal model 1 

2 

interacting multiple model (Kalman) filter [Blom and Bar-Shalom. IEEE TAC (1988).] 

uncertainties in the measurement model 
data association (Kalman) filter [Bar-Shalom. Automatica (1975).] 
adaptive (Kalman) filter 

3 communication constraints 
distributed Kalman filters with consensus like terms [Olfati-Saber; others] 

Analysis: Filter stability [Ocone and Pardoux SICON (1996).] 

1 Requires controllability of (A,σB) and observability of (A,H). 
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Problems and research directions 

Classical settings: additional issues due to 
uncertainties in the signal model 1 

2 

interacting multiple model (Kalman) filter [Blom and Bar-Shalom. IEEE TAC (1988).] 

uncertainties in the measurement model 
data association (Kalman) filter [Bar-Shalom. Automatica (1975).] 
adaptive (Kalman) filter 

3 communication constraints 
distributed Kalman filters with consensus like terms [Olfati-Saber; others] 

Modern settings: machine learning problems involving time-series data 

no good signal models! 
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Kalman-Bucy filter 
Implementation in high-dimensions 

Kalman-Bucy filter: P(Xt|Zt) is Gaussian N (X̂t,Σt) 

Update for mean: dX̂t = AX̂t dt + Kt(dZt − HX̂t dt) 
dΣt

Update for covariance: = Ric(Σt) (Ricatti equation) 
dt 

Kalman gain: Kt := ΣtH> 

Computation: 

if state dimension is d ⇒ covariance matrix is d × d 

⇒ computational complexity is O(d2) 

⇒ This becomes a problem in high-dimensional settings 

(e.g weather prediction) 

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory, 1961 
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Ensemble Kalman filter 
A controlled interacting particle system 

Idea: approximate the posterior P(Xt|Zt) using particles {Xt
i}N 

i=1 

Z N1 
P(Xt ∈ A|Zt) = p(x, t)dx ≈ 

A 
∑ 1Xt

i∈AN i=1 Z N1 
f (Xt

i)E(f (Xt)|Zt) = f (x)p(x, t) dx ≈ 
R 

∑N i=1 

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model (1994). 
K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation (2012). 
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(N) 1 N 
(N→∞)

Consistency: [under additional assumptions] mt := ∑ Xt
i −→ E(Xt|Zt)N i=1 

Computing the gain: 

empirical Kalman gain: K
(N) := Σ(N)H> 
t t 

Σ
(N) 1 N 

(Xi (N) (N)
)>empirical covariance: t := ∑ t − mt )(Xt

i − mtN − 1 i=1 

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model (1994). 
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Controlled Interacting Particle Systems P. G. Mehta 11 / 27 



P. G. Mehta

Literature review 
Background on ensemble Kalman filter 

EnKf formulation: 

EnKF based on perturbed observation (Evensen, 1994) 

The square root EnKF (Whitaker et. al. 2002) 

Continuous-time formulation (Bergemann and Reich. 2012) 

EnKF as special case of FPF (Yang et. al. 2013) 

Optimal transport formulation (Taghvaei and M., 2016) 

Error analysis (requires additional assumptions): 
1 

m.s.e converges as O( ) for any finite time (Le Gland et. al. 2009, Mandel et. al. 
N 

2011, Kelly et. al. 2014) 
1 

m.s.e converges as O( ) uniform in time (Del Moral, et. al. 2016, de Wiljes et. al. 
N 

2016, Bishop and Del Moral, 2017) 
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Outline 

1 Kalman filter 

[control] = Kt(dZt − HX̂t) 

2 Ensemble Kalman filter 

HXt
i + N−1 

∑j
N 
=1 HXj 

t 
[control] = K(N)

( dZt − dt)t 2 

3 Feedback particle filter (for nonlinear non Gaussian problems) 

[control] =?? 
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Feedback Particle Filter 
A numerical algorithm for nonlinear filtering 

Problem: 

Signal model: dXt = a(Xt)dt + σ(Xt)dBt X0 ∼ p0 

Observation model: dZt = h(Xt)dt + dWt 

Posterior distribution P(Xt|Zt)? 

Yang, M., Meyn. Feedback particle filter. IEEE Trans. Aut. Control (2013) 
Yang, Laugesen, M., Meyn. Multivariable Feedback particle filter. Automatica (2016) 
Zhang, Taghvaei, M. Feedback particle filter on Riemannian manifolds and Lie groups. IEEE Trans. Aut. Control (2018) 
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Particle filter 
Conventional approach 

Idea: approximate the posterior P(Xt|Zt) using particles {Xt
i}N 

i=1 

i.i.d
= a(Xt

i)dt + σ(Xt
i)dBi

t, ∼ p0dXt
i X0 

i 

dMi = Mt
ih(Xt

i)dZt, Mi = 1t 0 

where Mi are referred to as the importance weights. t 

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993). 
A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008). 
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008). 
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Idea: approximate the posterior P(Xt|Zt) using particles {Xt
i}N 

i=1 

i.i.ddXi = a(Xt
i)dt + σ(Xt

i)dBi Xi 
t t, 0 ∼ p0 

dMi = Mt
ih(Xt

i)dZt, Mi = 1t 0 

where Mi are referred to as the importance weights. t 

approximation: 
N1 

E(f (Xt)|Zt) = lim ∑ Mt
if (Xt

i)
N→∞ N i=1 

Problems: 

1 High simulation variance in importance weights. This necessitates resampling. 

2 Particle impoverishment for high-dimensional problems – N ∝ exp(d) 

3 No explicit error correction structure! Where is the ensemble Kalman filter? 

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993). 
A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008). 
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008). 
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How do these compare? 
FPF vs. BPF 

Reproduced from: Surace, Kutschireiter, Pfister. How to avoid the curse of dimensionality: scalability of particle filters with and without 

importance weights? SIAM Review (2019). 

Additional comparisons appear in: A. K. Tilton, S. Ghiotto, and P. G. Mehta. A comparative study of nonlinear filtering techniques. In Proc. 16th Int. 
Conf. on Inf. Fusion, pages 1827-1834, Istanbul, Turkey, July 2013. 
P. M. Stano, A. K. Tilton, and R. Babuska. Estimation of the soil-dependent time-varying parameters of the hopper sedimentation model: The FPF versus 
the BPF. Control Engineering Practice, 24:67-78 (2014). 
K Berntorp. Feedback particle filter: Application and evaluation. In 18th Int. Conf. Infor- mation Fusion, Washington, DC, 2015. 
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Feedback particle filter 
What is the gain function? 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx |{z}φ ∈H0

1 

post. 

K = ∇φ 

First order optimality condition (E-L equation) is the Poisson equation: 

−Δρ φ := − 
ρ(

1 
x) 

∇ · (ρ(x) ∇φ (x)) = (h(x) − ĥ) on Rd |{z} |{z}
K 

post. 

Linear Gaussian case: Solution is the Kalman gain! 

Laugesen, M., Meyn and Raginsky. Poisson equation in nonlinear filtering. SIAM J. Control and Optimization (2015). 
Yang, Laugesen, M., Meyn. Multivariable Feedback particle filter. Automatica (2016). 
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(1) Non-Gaussian density, (2) Gaussian density 
(1) Nonlinear gain function, (2) Constant gain function = Kalman gain 

h(Xt
i)+ ĥt

(1) FPF: dXi = a(Xt
i) dt + σB(Xt

i)dBi
t + Kt(Xt

i) ◦ ( dZt − dt)t 2| {z }
FPF 
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(1) Non-Gaussian density, (2) Gaussian density 
(1) Nonlinear gain function, (2) Constant gain function = Kalman gain 

h(Xt
i)+ ĥt

(1) FPF: dXt
i = a(Xt

i) dt + σB(Xt
i)dBi

t + Kt(Xt
i) ◦ (dZt − 

2
dt) | {z }

FPF 

HXt
i + HX̂t

(2) Linear Gaussian: dXi = AXt
i dt + σB dBi

t + Kt( dZt − dt)t 2| {z }
EnKF 

The linear Gaussian FPF is the square-root form of the EnKF. This square-root form of the EnKF was independently obtained by K. Bergemann and S. 
Reich. An ensemble Kalman-Bucy filter for continuous data assimilation (2012). 
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Non-Gaussian case 
Lets get to approximation! 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
φ ∈H1 |{z}

0 
post. 

−1 0 1

x

0

10

K(x)

Exact

Existence uniqueness theory in: Yang, Laugesen, M., Meyn. Multivariable Feedback particle filter. Automatica (2016) 
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Non-Gaussian case 
Lets get to approximation! 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
φ ∈H1 |{z}

0 
post. 

A closed-form formula: 

(best const. approximation) = 

−1 0 1

x

0

10

K(x)

Exact
M=1

Z N 
(h(x) − ĥ)xρ(x)dx ≈ 

1 
∑(h(Xt

i) − ĥ(N))Xt
i 

N i=1 
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Why is it useful? 
Relationship to the ensemble Kalman filter 

FPF = EnKF in two limits: 

Linear Gaussian where gain function = Kalman gain 

Approximation of the gain function by its average (constant) value 

1 

2 

Taghvaei, de Wiljes, M., and Reich, Kalman Filter and its Modern Extensions for the Continuous-time Nonlinear Filtering Problem, ASME J. of Dynamic 
Systems, Measurement, and Control (2018). 
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Why is it useful? 
Relationship to the ensemble Kalman filter 

FPF = EnKF in two limits: 

Linear Gaussian where gain function = Kalman gain 

Approximation of the gain function by its average (constant) value 

1 

2 

Question: Can we improve this approximation? 

Taghvaei, de Wiljes, M., and Reich, Kalman Filter and its Modern Extensions for the Continuous-time Nonlinear Filtering Problem, ASME J. of Dynamic 
Systems, Measurement, and Control (2018). 
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Non-Gaussian case 
Galerkin approximation 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
φ ∈S |{z}

post. 

−1 0 1

x

0

10

K(x)

Exact
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φ ∈S |{z}

post. 

−1 0 1

x

0

10

K(x)

Exact
M=1

Controlled Interacting Particle Systems P. G. Mehta 20 / 27 



P. G. Mehta

Non-Gaussian case 
Galerkin approximation 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
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Galerkin approximation 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
φ ∈S |{z}

post. 

−1 0 1

x

0

10

K(x)

Exact
M=3

ψ ∈ {1,x, . . . ,xM } 
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Non-Gaussian case 
Galerkin approximation 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
φ ∈S |{z}

post. 

−1 0 1

x

0

10

K(x)

Exact
M=5
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Non-Gaussian case 
Galerkin approximation 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
φ ∈S |{z}

post. 

−1 0 1

x

0

10

K(x)

Exact
M=7
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Non-Gaussian case 
Galerkin approximation 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
φ ∈S |{z}

post. 

−1 0 1

x

0

10

K(x)

Exact
M=9
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Non-Gaussian case 
Galerkin approximation 

Gain is a solution of an optimization problem: Z � � 
min |∇φ |2(x)+(h(x) − ĥ)φ(x) ρ(x) dx 
φ ∈S |{z}

post. 

−1 0 1

x

0

10

K(x)

Exact
M=1

Moral of the story: basis function selection is non-trivial! 
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What are we looking for? 
Ensemble Kalman filter + 

Z N 
E[K] = (h(x) − ĥ)xρ(x)dx ≈ 

1 
∑(h(Xi) − ĥ(N))Xi 

N i=1 
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Ensemble Kalman filter + 

Z N 
E[K] = (h(x) − ĥ)xρ(x)dx ≈ 

1 
∑(h(Xi) − ĥ(N))Xi 

N i=1 

Question: Can we improve this approximation? 
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Outline 

1 Kalman filter 

Kt = ΣtH 

2 Ensemble Kalman filter 

N 
Ki 1 

(h(Xj h(N))Xj 
t = 

N ∑ t ) − ˆ t 
j=1 

3 Feedback particle filter 

Kt
i =?? 
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Gain function Approximation 
Key idea is to use diffusion maps 

(1) Poisson equation: −εΔρ φ = ε(h − ĥ) 

R. Coifman, S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 2006, 
M. Hein, et. al., Convergence of graph Laplacians on random neighborhood graphs, JLMR, 2007 
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Gain function Approximation 
Key idea is to use diffusion maps 

(1) Poisson equation: −εΔρ φ = ε(h − ĥ) 

(2) Semigroup formulation: (I − eεΔρ )φ = ε(h − ĥ)ds 

(3) Fixed-point problem: φε = Tε φε + ε(h − ĥε ) 

φ (N) (N)
φ (N)

(4) Empirical approximation ε = Tε ε + ε(h − ĥN ) 

(N)
Tε is a N × N Markov matrix, 

k(N)
(Xi ,Xj)(N) εT =ε ij 

∑
N
l=1 k

(N)
(Xi

ε ,Xl) 

k(N)
(x,y) is the diffusion map kernel ε 

R. Coifman, S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 2006, 
M. Hein, et. al., Convergence of graph Laplacians on random neighborhood graphs, JLMR, 2007 
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So how well it works? 

1 

2 

No basis function selection! 

Simple formula 

N 

2 1 0 1 2

x

0

1

2

3

4

5

6

7

K

const. gain

exact
= 10 1

Ki = ∑ sijXj 

j=1 

Reduces to the constant gain in the 
limit as ε → ∞ 

N 

3 

1 
Ki = ∑(h(Xj) − ĥ(N))Xj 

N j=1 

Taghvaei and M., Gain Function Approximation for the Feedback Particle Filter, IEEE Conference on Decision and Control, (2016). 
Taghvaei, M., and Meyn, Error Estimates for the Kernel Gain Function Approximation in the Feedback Particle Filter, American Control Conference, (2017). 
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So how well it works? 

1 

2 

No basis function selection! 

Simple formulaa 

2 1 0 1 2

x

0

1

2

3

4

5

6

7

K

const. gain

exact
= 10 1

Ki = 
N 

∑ sijXj 

j=1 

Reduces to the constant gain in the 
limit as ε → ∞ 

N 

3 

1 
Ki = ∑(h(Xj) − ĥ(N))Xj 

N j=1 

aReminiscent of the ensemble transform (Reich, A non-
parametric ensemble transform method for Bayesian in-
ference, SIAM J. Sci. Comput., (2013)) 

Taghvaei and M., Gain Function Approximation for the Feedback Particle Filter, IEEE Conference on Decision and Control, (2016). 
Taghvaei, M., and Meyn, Error Estimates for the Kernel Gain Function Approximation in the Feedback Particle Filter, American Control Conference, (2017). 
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N↑∞ ε↓0 
Convergence analysis: φ

(N) −→ φε −→ φε 
variance bias 

1 
Error estimates: r.m.s.e = O(ε)+O( )

ε1+d/2N1/2|{z} | {z }bias 
variance 

2 1 0 1 2

x

0

1

2

3

4

5

6

7

K

const. gain

exact
= 102

variance 
dominates

bias 
dominates

diffusion map
constant gain

(Bias-variance tradeoff) 
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N↑∞ ε↓0 
Convergence analysis: φ

(N) −→ φε −→ φε 
variance bias 

1 
Error estimates: r.m.s.e = O(ε)+O( )

ε1+d/2N1/2|{z} | {z }bias 
variance 

2 1 0 1 2

x

0
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6
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K

const. gain

exact
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variance 
dominates

bias 
dominates

diffusion map
constant gain

(Bias-variance tradeoff) 
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Error analysis 
Numerical experiments 

O( )

const. gain

const. gain

O(N2)

O(N)

const. gain

diffusion-map
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Summary slide 
Ensemble Kalman filter and FPF 

h(Xt
i)+ N−1 

∑j h(Xt
j
)

dXi = a(Xt
i) dt + σ(Xt

i)dBi +Kt(Xt
i) ◦ ( dZt − dt) X0 

i ∼ p0t t| {z } | {z2 }
simulation error 

N 
ENKF: Kt(Xt

i) = 
1 
N 

(h(Xt
j
) − ĥ(N)

)Xj 
t t∑ 

j=1 

N 
FPF: Kt(Xt

i) = ∑ sijXt
j 

j=1 
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Interacting particle systems for estimation, learning and optimal 
control 

Minimize
 Bellman error

sensory data

reward
control input

estimate

TD-learning

coupled oscillator FPF

[Click to play the movie] 

T. Wang, A. Taghvaei, P. Mehta, Q-learning for POMDP: An application to learning locomotion gaits, CDC (2019) 
A. Taghvaei, S. Hutchinson and P. G. Mehta. A coupled-oscillators-based control architecture for locomotory gaits. CDC (2014). 
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Backup! 

Controlled Interacting Particle Systems P. G. Mehta 27 / 27 




