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Are AI tools ready? 

AI can potentially give us more resilient, sustainable, 
and autonomous energy systems… 



   [Pei et al 2017] 



   [Pei et al 2017] 
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Most algorithms are benchmarked on toy 
envi ents 



      

 

     Most algorithms are benchmarked on toy 
environments 

Energy systems must deal with 
• physical constraints 
• distribution shifts 
• distributed, multi-agent control 



   

   
     

      
       

        

  

       
           

   

Introducing Caltech/UCSD SustainGym 

Five environments (so far): 
1. Adaptive EV charging (local and multi-location) 
2. Grid-scale battery storage management for price arbitrage 
3. Data center dynamic capacity management (VCCs, local and global) 
4. Cogeneration management of a plant producing steam and electricity 
5. Smart building management to meet temperature requirements 

Caltech/UCSD Collaboration led by Christopher Yeh with co-authors: 
Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize Chen, 
Mohammad Hosseini, Azarang Golmohammadi, Yuanyuan Shi, Yisong Yue 



 
        

      
      

 
     

 

   Introducing Caltech/UCSD SustainGym 

Environments feature 
• Focus on marginal carbon emissions (uses other Umass work) 
• Real-world data and distribution shifts (from Google/etc.) 
• Distribution shifts in demand & environmental parameters 
• Physical constraints 
• Mix of discrete and continuous actions 
• Multi-agent settings 



 

  

   Introducing Caltech/UCSD SustainGym 

System 
details 

Workload 
details 



  An example: Carbon-first Cloud 
Computing 







     
But ML/AI tools are not in use in practice… 

Can’t afford to “fail at scale” 
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Example: Capacity provisioning with on-site solar & storage 

Deep RL-based 

Optimization-based 

Sim-to-real gap / Distribution shift 



 
       

    Distribution shift
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Example: Capacity provisioning with on-site solar & storage 

Deep RL-based 

Goal 

Optimization-based 

Sim-to-real gap / Distribution shift 



    An example: Co-generation scheduling for the 
grid 



 

       

    Distribution shift

Example: Co-generation plant (steam+electricity) with co-located wind generation 
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Deep-RL-based 

Optimization-based 

Sim-to-real gap / Distribution shift 
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Example: Co-generation plant (steam+electricity) with co-located wind generation
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Robustness/Safety

Black-box AI/ML

Control &
Online Algs

?

• Robust/adversarial training [Ehlers 17], [Katz et al 17], 
[Maganti 17], [Dutta et al 18], [Tjeng et al 18], [Gehr 18,], [Salman 19], [Bak 20], 
[Fazlyab 19, 22], [Robey et al 21,22], [Eastwood et al 23]. …

• Post-training verification [Huang et al 17], [Kuper et al 18], 
[Ivanov et al 19], [Shukla et al 19],  [Matni et al 20],  [Fazlyab et al 22],  …

• Model-based RL in dynamical systems [Recht 19], 

[Kakade et al 20], [Simchowitz & Foster 20], [Lale et al 21], …

• Lyapunov-based policy learning [Chow et al 18], 
[Richards et al 18], [Chang et al 19], [Jin et al 20], [Shi et al 21], …

• Model-free policy search [Fazel et al 18], [Malik et al 18], [Bu 
et al 19], [Mohammadi et al 19], [Li et al 19], [Qu et al 20], …

• Safe/Robust RL [Garcia & Fernandez 15], [Fisac et al 19], [Taylor et al 
20], [Hewig et al 20],[Panaganti at al 21, 22],  [Shi et al 21, 22], …

Model-free

Model-based
=

=
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Trusted Expert

Learning-augmented 
algorithms

This talk:



AI/ML

Online
Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data
Learning-augmented 
algorithms

This talk:

Treated as black boxes 
 Allows adoption of new AI tools by combining with current trusted approach



AI/ML

Online
Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

How should advice be used?
Switch between them? Combine them? Hedge? 

Learning-augmented 
algorithms

This talk:



(Nearly) Match the performance of the untrusted expert (AI tool), when it does well.

Always ensure a worst-case performance guarantee.
Goal 2: Robustness

Goal 1: Consistency

Use only as much advice as necessary to be robust and consistent.
Goal 4: Frugality / Succinctness

Trade off between robustness and consistency smoothly in prediction error.
Goal 3: Smoothness

Skip for
today

𝐶𝑜𝑠𝑡 𝐴𝑙𝑔 ≤ 1 + 𝛿 𝐶𝑜𝑠𝑡(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑)

𝐶𝑜𝑠𝑡 𝐴𝑙𝑔 ≤ 𝛾!"#	𝐶𝑜𝑠𝑡 𝑂𝑝𝑡 , where 𝛾!"# is “close to” 𝛾$%&'$()bic
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The study of learning augmented algorithms with untrusted advice is exploding 

Introduced by [Lykouris & Vassilvitskii, 2018] in the context of online caching

Since then, applied in a wide variety of settings:
 • ski rental [Purohit et al 18] [Angelopoulos et al 

19] [Bamas et al 20] [Wei & Zhang 20], … 
• bloom filters [Mitzenmacher 18]
• online set cover [Bamas et al 20]
• online matching [Antoniadis et al 20]
• metrical task systems [Antoniadis et al 20]
• Scheduling [Scully et al 22]

• data center capacity [Rutten & Mukherjee 21]
• demand response [Lee et al 21]
• online optimization [Christianson et al 21] 
• online conversion problems [Sun et al 21]
• convex body chasing [Christianson et al 21]
• linear quadratic control [Li et al 21]
• Online knapsack [Sun et al 22]

Bibliography of 130+ papers at https://algorithms-with-predictions.github.io/



This talk: Algorithm design & fundamental limits on the 
use of learning-augmented algorithms. 

Running Example: Convex Body Chasing 
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How do you decide where to move 
without knowing the future?
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Convex body chasing has a long history & many applications

Reductions to online convex optimization and online control.  Applications to data centers, video 
streaming, drone trajectory tracking, “learning to control” and “safe control”, among others.

Exciting algorithmic progress in recent years [Antoniadis et al 16], [Bansal et al 20], [Bubeck et 
al 19], [Sellke 20], [Argue 20], [Bubeck et al 20], [Argue 21], …

Theorem [Bubeck et al 20]. Moving to the Steiner point of the body each round obtains an 
𝑂 min 𝑑, 𝑑 log 𝑇 -competitive ratio, and any online algorithms is Ω 𝑑 . 

dimension of action space



Convex body chasing has a long history & many applications

Reductions to online convex optimization and online control.  Applications to data centers, video 
streaming, drone trajectory tracking, “learning to control” and “safe control”, among others.

Exciting algorithmic progress in recent years [Antoniadis et al 16], [Bansal et al 20], [Bubeck et 
al 19], [Sellke 20], [Argue 20], [Bubeck et al 20], [Argue 21], …

Theorem [Bubeck et al 20]. Moving to the Steiner point of the body each round obtains an 
𝑂 min 𝑑, 𝑑 log 𝑇 -competitive ratio, and any online algorithms is Ω 𝑑 . 

Choices of algorithm are quite conservative. Advice can help.
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But the advice could have been bad…
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When should an algorithm “switch” between the trusted/untrusted advice?

How much “memory” is needed to decide between trusted/untrusted advice?



Attempt 1: A switching algorithm

1. Follow the untrusted advice until total distance traveled is 𝑟.  
2. Follow the trusted advice until total distance traveled is 𝑟.
3. Set 𝑟 ← 2𝑟 and repeat.  Treats advice as

black boxes.



Attempt 1: A switching algorithm

1. Follow the untrusted advice until total distance traveled is 𝑟.  
2. Follow the trusted advice until total distance traveled is 𝑟.
3. Set 𝑟 ← 2𝑟 and repeat.  

Optimize to bias
toward consistency

Theorem. For nested convex body chasing, the switching algorithm is

                            (1 + 𝛿)-consistent & 𝑂(𝑑𝐷/𝛿)-robust.

diameter of action space



Attempt 1: A switching algorithm

1. Follow the untrusted advice until total distance traveled is 𝑟.  
2. Follow the trusted advice until total distance traveled is 𝑟.
3. Set 𝑟 ← 2𝑟 and repeat.  

Optimize to bias
toward consistency

Theorem. For nested convex body chasing, the switching algorithm is

                            (1 + 𝛿)-consistent & 𝑂(𝑑𝐷/𝛿)-robust.

“Best of both worlds”: Black-box AI/ML imbued with robustness guarantee.

Constant factor loss in robustness yields near-optimal consistency.



A Fundamental Limit Theorem. For general convex body chasing, any switching 
algorithm that is robust must be at least 3-consistent.

Theorem. For nested convex body chasing, the switching algorithm is

                            (1 + 𝛿)-consistent & 𝑂(𝑑𝐷/𝛿)-robust.



A Fundamental Limit Theorem. For general convex body chasing, any switching 
algorithm that is robust must be at least 3-consistent.

Theorem. For general convex body chasing, any 
memoryless algorithm that is robust cannot have 
non-trivial consistency. 

Consistency better than if advice 
had been ignored



Attempt 2: A Randomized Algorithm

𝐵!

𝑥%

𝑥%&!

)𝑥%&!

Apply multiplicative weights a la [Blum & Burch 2000]

Multiplicative Weights [Blum & Burch 2000]
Update weights for each expert
      𝑤!/0"

$1. = 𝑤!/0"
$ ⋅ 1 − 𝛽 23'$!,!(!/0")/7

Update probability of following each expert
       𝑝8$1. = I

9$%&"
∑9$%&"

Switch to other expert with probability proportional to 
mass transferred from 𝑝!/0"

$  to 𝑝!/0'
$1.



Theorem [Antoniadis et al 2020]. For general convex body chasing, 

multiplicative weights has cost

1 + 𝛿 ⋅ 4𝜂𝐶𝑜𝑠𝑡(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑) + 𝑂(
⁄𝐷 𝛿) [Consistency]

and

1 + 𝛿 ⋅ 𝑂 𝑑 𝐶𝑜𝑠𝑡 𝑂𝑝𝑡 + 𝑂( ⁄𝐷 𝛿)[Robustness]

Attempt 2: A Randomized Algorithm

Apply multiplicative weights a la [Blum & Burch 2000]

Aggregate prediction quality of 
untrusted advice



Attempt 2: A Randomized Algorithm

Apply multiplicative weights a la [Blum & Burch 2000]

Theorem [Antoniadis et al 2020]. For general convex body chasing, 

multiplicative weights has cost

1 + 𝛿 ⋅ 4𝜂𝐶𝑜𝑠𝑡(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑) + 𝑂(
⁄𝐷 𝛿) [Consistency]

and

1 + 𝛿 ⋅ 𝑂 𝑑 𝐶𝑜𝑠𝑡 𝑂𝑝𝑡 + 𝑂( ⁄𝐷 𝛿)[Robustness]

Multiplicative Weights has been used to incorporate untrusted advice broadly.

(This result extends to metrical task systems, MTS. )



Theorem [Antoniadis et al 2020]. For general convex body chasing, 

multiplicative weights has cost

1 + 𝛿 ⋅ 4𝜂𝐶𝑜𝑠𝑡(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑) + 𝑂(
⁄𝐷 𝛿) [Consistency]

and

1 + 𝛿 ⋅ 𝑂 𝑑 𝐶𝑜𝑠𝑡 𝑂𝑝𝑡 + 𝑂( ⁄𝐷 𝛿)[Robustness]

Attempt 2: A Randomized Algorithm

Apply multiplicative weights a la [Blum & Burch 2000]

Diameter dependence



Attempt 3: Exploiting Convexity

Adaptively choose a convex combination of the two advice points.

𝐵%&!

𝑥%

𝑥%&!

)𝑥%&!



𝐵%&!

𝑥%

𝑥%&!

)𝑥%&!

Adaptively choose a convex combination of the two advice points.

Bicompetitive Line Chasing
If 𝐶𝑜𝑠𝑡;,$ 𝑥  > 𝛿 ⋅ 𝐶𝑜𝑠𝑡;,$(N𝑥)
          then follow N𝑥$1.
Else, take a greedy step from N𝑥$1. toward 𝑥$1.
          with  a series of radial projections depending on 
          𝐶𝑜𝑠𝑡$,$(N𝑥) and 𝑑𝑖𝑠𝑡(N𝑥$, 𝑥$).

Attempt 3: Exploiting Convexity



Adaptively choose a convex combination of the two advice points.

Theorem. For general convex body chasing, the interpolation algorithm is

             ( 2 + 𝛿)-consistent & 𝑂(𝑑/𝛿#)-robust.

Attempt 3: Exploiting Convexity

Dependence on the diameter 𝑫 is gone!



Theorem. For general convex body chasing, the interpolation algorithm is

             ( 2 + 𝛿)-consistent & 𝑂(𝑑/𝛿#)-robust.

Adding robustness means sacrificing performance of black-box AI.

Is this a fundamental limit?

Adaptively choose a convex combination of the two advice points.

Attempt 3: Exploiting Convexity



A Fundamental Limit Theorem. For general convex body chasing, given a 𝐶-
competitive algorithm, any (1 + 𝛿)-consistent 
algorithm is 2'( ⁄! *)𝐶-robust.

𝐵O
𝐵OPQ

𝑥% = 𝑥%&!	

)𝑥%

, diameter 2O diameter 2OPQ



A Fundamental Limit Theorem. For general convex body chasing, given a 𝐶-
competitive algorithm, any (1 + 𝛿)-consistent 
algorithm is 2'( ⁄! *)𝐶-robust.

𝐵OPQ

𝑥% = 𝑥%&!	

)𝑥%

)𝑥%&!

Distance 2%

, diameter 2O diameter 2OPQ

Key Property: 𝐶𝑜𝑠𝑡",%&! )𝑥 = 𝑑𝑖𝑠𝑡 )𝑥%&!, 𝑥%&!
(Note: 𝐿1 distance, not Euclidean distance.)

𝐵O



A Fundamental Limit Theorem. For general convex body chasing, given a 𝐶-
competitive algorithm, any (1 + 𝛿)-consistent 
algorithm is 2'( ⁄! *)𝐶-robust.

𝐵O
𝐵OPQ

𝑥% = 𝑥%&!	

)𝑥%

)𝑥%&!

Distance 2%

, diameter 2O diameter 2OPQ

1. Any consistent algorithm must start following )𝑥%.
2. No algorithm can move more than 𝛿/2 probability to 𝑥%  in any round.

So, at 𝑇 = 1/𝛿, only ½ probability can be on 𝑥.,	
which means the total cost is at least 2. = 2 ⁄! *.



An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

𝑥%&!
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DART
If 𝐶𝑜𝑠𝑡;,$ 𝑥  > 𝛿/4 ⋅ 𝐶𝑜𝑠𝑡;,$(N𝑥)
          then follow N𝑥$1.
Else, update probability of following the advice

       𝑝!7=$1. = max 𝑝!7=$ − >23'$!,! ?*!
@)8'$ ?*!,*!

, 0
Sample action through optimal transport plan 
(Wasserstein-1) for 𝑝!/0"

$ → 𝑝!/0'
$1.



Theorem. For general convex body chasing, DART is 
(1 + 𝛿)-consistent and 2/( ⁄! *)𝑂 𝑛 -robust.

An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)



Theorem. For convex body chasing with bounded diameter DART 
is (1 + 𝛿)-consistent and 𝑂( ⁄1 𝛿)-robust with an additive 
𝑂( ⁄𝐷 𝛿) .

Theorem. For metrical task systems DART is (1 + 𝛿)-
consistent and2/( ⁄! *)𝑂 log# 𝑛 -robust.

Theorem. For 𝑘-server, DART is (1 + 𝛿)-consistent and 
𝑂( ⁄𝑘 𝛿)-robust.

Theorem. For 𝑘-function chasing in ℝ, DART is (1 + 𝛿)-
consistent and 𝑂( ⁄𝑘 𝛿)-robust.

Theorem. For general convex body chasing, DART is 
(1 + 𝛿)-consistent and 2/( ⁄! *)𝑂 𝑛 -robust.

An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)



Theorem. For convex body chasing with bounded diameter DART 
is (1 + 𝛿)-consistent and 𝑂( ⁄1 𝛿)-robust with an additive 
𝑂( ⁄𝐷 𝛿) .

Theorem. For metrical task systems DART is (1 + 𝛿)-
consistent and2/( ⁄! *)𝑂 log# 𝑛 -robust.

Theorem. For 𝑘-server, DART is (1 + 𝛿)-consistent and 
𝑂( ⁄𝑘 𝛿)-robust.

Theorem. For 𝑘-function chasing in ℝ, DART is (1 + 𝛿)-
consistent and 𝑂( ⁄𝑘 𝛿)-robust.

Matches state of the art 

1st w/o 𝐷 dependence

Prior: 𝑂( ⁄1 𝛿01!)

1st w/o 𝐷 dependence

Theorem. For general convex body chasing, DART is 
(1 + 𝛿)-consistent and 2/( ⁄! *)𝑂 𝑛 -robust.

An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)



An example: Carbon-first Cloud 
Computing
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An example: Co-generation scheduling for the 
grid
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This talk: Algorithm design & fundamental limits on the 
use of learning-augmented algorithms. 

Running Example: Convex Body Chasing

Applications: Carbon-aware data centers, co-generation 
scheduling, voltage control, drone trajectory tracking, …
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How should advice be used?
Switch between them? Combine them? 

Learning-augmented 
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Today:



ML/AI

Online
Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

Can we move beyond robustness & consistency?
Average-case? Smoothness? Frugality? Memory-dependence?

Learning-augmented 
algorithms

Today:



ML/AI

Online
Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

What quantity should be predicted? 
Costs? Actions? Uncertainty 
Quantification?

What if there are multiple untrusted/trusted advisors?
What if you’re not sure which is the trusted advisor? 
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Online
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Training Data

What if the ML model is trained online?

What if the 
learning isn’t a 
black box?
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What if the model needs to be learned?

A teaser: Online voltage control with unknown grid topology



What if the model needs to be learned?

Control based on original model Our algorithm: Consistent Model Chasing

A teaser: Online voltage control with unknown grid topology



Our Algorithm: Consistent Model Chasing

safety region

Set of consistent models

Design optimal controller, 𝐾!∗( "𝐴(, %𝐵()

via Nested Convex Body Chasing



safety region

Set of consistent models

X

( "𝐴(, %𝐵() Design optimal controller, 𝐾!∗X



safety region

Set of consistent models

Design optimal controller, 𝐾#∗

X
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safety region

Set of consistent models

Design optimal controller, 𝐾$∗

X
X
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Theorem (informal): Under suitable assumptions, Consistent Model 

Chasing (CMC) guarantees stability of an unknown dynamical 

system on a single trajectory with a finite mistake bound.



safety region

Set of consistent models

Design optimal controller, 𝐾$∗

X
X

((𝐴", (𝐵") XX

X

Theorem (informal): Under suitable assumptions, Consistent Model 

Chasing (CMC) guarantees stability of an unknown dynamical 

system on a single trajectory with a finite mistake bound.

First single trajectory stabilization of an unknown adversarial system.



Holds even in networked systems with communication delay, 
    adversarial disturbances,
    time varying models,
    and distributed agents!

Theorem (informal): Under suitable assumptions, Consistent Model 

Chasing (CMC) guarantees stability of an unknown dynamical 

system on a single trajectory with a finite mistake bound.

First single trajectory stabilization of an unknown adversarial system.
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Learning-Augmented Algorithms for Sustainable Systems

Case studies done using SustainGym
https://chrisyeh96.github.io/sustaingym/

New book on 
heavy tails!
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