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Most algorithms are benchmarked on toy
' t




Most algorithms are benchmarked on toy

( environments
Energy systems must deal with
* physical constraints

o distribution shifts
o distributed, multi-agent control



Introducing Caltech/UCSD SustainGym

Five environments (so far):

Adaptive EV charging (local and multi-location)

Grid-scale battery storage management for price arbitrage

Data center dynamic capacity management (V(Cs, local and global)
Cogeneration management of a plant producing steam and electricity
Smart building management to meet temperature requirements

1AW NH

(altech/UCSD Collaboration led by Christopher Yeh with co-authors:

Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize Chen,
Mohammad Hosseini, Azarang Golmohammadi, Yuanyuan Shi, Yisong Yue




Introducing Caltech/UCSD SustainGym

Environments feature

*  Focus on marginal carbon emissions (uses other Umass work)
* Real-world data and distribution shifts (from Google/etc.)

o Distribution shifts in demand & environmental parameters

*  Physical constraints

* Mix of discrete and continuous actions

 Multi-agent settings




Introducing Caltech/UCSD SustainGym

Observation,
Reward

4 Gym \
- N System
Generative Samp Ii details
Model
L oce ) Workload
- N details
Fetch
Real traces [—p Carbon costs
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The high-voltage

July 29, 2022 BYy: peter Judge
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Dominion En
demands in Virginia

North American utility bom

Jominion has told customers that

This website uses cookies t0 ensure

lines simply

O Have your say

you get the pest ex

periencé on our website. Learn moré m

can't handle more power. says the utility

g

inion Energy says it may not be able to meet demands for power in Ashburn. Northern Virginia,
jelaying puilding projects in the world's fastest-growing data center hub by many years.

it has power supplies. put can No longer guarantee to deliver the quantity of electricity
-ustomers want via overhead powerlines. \f these warnings prove true. th

_oudoun County's t@x revenue would take a severe hit if the hub of data centers in Ashburn stalls. For now. local authorities

3nd industry podies are struggling 10 understand the sudden warning from Dominion.

Dominion supplies electricity in Virginia, North Carolina, and South

carolina, as well as natural gas to parts of the US. |n the data center-rich

counties of Loudoun.

equipment taxes provi

carried by overhead powerl'\nes marching along roads -2 delivery method
that has led tO protests.

===

Loudoun County has 26 million square feet of data center space with 5

million more in development and many more projects p\anned. Data center

ﬂ’ﬂ

is could stall projects with billions invested. and

Prince William, and Fauquier, most of the electricity s

de one-third of the County's tax income, put has

Lealll = =——=
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DATA CENTERS AND INFRASTRUCTURE

Our data centers nOwW work harder
when the sun shines and wind blows
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a transformation in how

Addressing the challenge of climate change demands
the world produces and uses energy. Google has been carbon neutral since
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DeepMind

Blog

But ML/AI’tooIs are not in use in practice...
Can't afford to “fail at scale”

BLOG POST
WEJ ReSEARCH

DeepMind Al Reduces Google Data
~entre Cooling Bill by 40%

rom smartphone assistants to image recognition and translation, machine learning already helps us in our

ost challenging physical problems -

dustrial systems like data centres consume a

veryday lives. But it can also help us to tackle some of the world’s m

uch as energy consumption. Large-scale commercial and in
st of energy, and while much has been done to stem the growth of energy use, there rel

mains a lot more to
o given the world's increasing nee

d for computing power.

educing energy usage has been a major focus for us over the past 10 years: we have built our own super-
fficient servers at Google, invented more efficient ways to cool our data centres and invested heavily in
reen energy sources, with the goal of being powered 100 percent by renewable energy- Compared to five

und 3.5 times the computing power out o

cars ago, we now getaro f the same amount of energy, and we

ontinue to make many improvements each year.




Average cost

Example: Capacity provisioning with on-site solar & storage

3500 A
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Optimization-based -

-1.0 -0.5 0.0 0.5 1.0

Sim-to-real gap / Distribution shift




Average cost

Example: Capacity provisioning with on-site solar & storage

3500 -
3000 -
2500 A
Deep RL-based

2000 A

ety NS boal,,
1500 o Optimization-based
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Normalized cost

Example: Co-generation plant (steam-+electricity) with co-located wind generation

1.3
1.2
1.11

1.0+

0.9-

Deep-RL-based

Optimization-based

-1.0

~0.5 0.0 0.5
Sim-to-real gap / Distribution shift

1.0
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Normalized cost

Example: Co-generation plant (steam-+electricity) with co-located wind generation

1.3

Deep-RL-based

0.9-

-1.0 =-0.5 0.0 0.5

Sim-to-real gap / Distribution shift
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Performance

Model-free .

IBIac :
*

( » Robust/adversarial training s 7, foteetanr),

[Maganti17], [Duttaetal 18], [Tjeng et al 18], [Gehr 18,], [Salman 19], [Bak 20],
[Fazlyab 19, 22], [Robey et al 21,22], [Eastwood et al 23]. ...

° POSt‘trammg Venﬁcatmn [Huang et al 17], [Kuper et al 18],
[lvanov et al 19], [Shuklaet al 19], [Matnietal 20], [Fazlyab etal 22], ..

Model-based RL in dynamical systems 1),

[Kakade et al 20], [Simchowitz & Foster 20], [Lale et al 21], ...

* Lyapunov-based policy learning rcowetaizs).
[Richards et al 18], [Chang et al 19], [Jinetal 20], [Shietal 21], ...

° MOdE|-fI'ee p0|lcy SearCh [Fazel et al 18], [Malik et al 18], [Bu
etal 19], [Mohammadi et al 19], [Li etal 19], [Quetal 20], ...

/ML

¢ SafE/ RObUSt Rl. [Garcia & Fernandez 15], [Fisac et al 19], [Taylor et al

20], [Hewig et al 20],[Panagantiat al 21, 22], [Shietal 21,22], ..

Control § = Model-based

°~J

Robustness/Safety



Performance

Untrusted Expert

This talk:
Learning-augmented

v Robustness/Safety
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\\Untrusted Advice > f

;' AI/ML |
Input / - | E
! \ Meta Algorithm Action :
I: Online TruXed Advice > .'
\ Algorithm - | :'

______________

Treated as black boxes
Allows adoption of new Al tools by combining with current trusted approach



(Tralnmg DaD This talk:
Learning-augmented

___________________________ 3lgorithms - ----------

AUML JUntrusted Advice > f

Input

\ Meta Algorithm

Online Trusted Advice
Algorithm

________________________________________________

How should advice be used?
Switch between them? Combine them? Hedge?



/Goal 1: Consistency

(Nearly) Match the performance of the untrusted expert (Al tool), when it does well.
Cost(Alg) < (1 + 6)Cost(Untrusted)

Goal 2: Robustness
Always ensure a worst-case performance guarantee.

\C 0st(Alg) < Vg Cost(Opt), wherey g is close to” vy steq

bicompetitive guarantee
A

r N\
Goal 3: Smoothness
Trade off between robustness and consistency smoothly in prediction error.
SRip for
Goal 4: Frugality / Succinctness today
Use only as much advice as necessary to be robust and consistent.

. 7



The study of learning augmented algorithms with untrusted advice is exploding

Introduced by [Lykouris & Vassilvitskii, 2018] in the context of online caching

Since then, applied in a wide variety of settings:

« skirental [Purohit et al 18] [Angelopoulos etal « data center capacity [Rutten & Mukherjee 21]
19] [Bamas et al 20] [Wei & Zhang 20], ... demand response [Lee et al 21]

bloom filters [Mitzenmacher 18] online optimization [ Christianson et al 21]
online set cover [Bamas et al 20] online conversion problems [Sun et al 21]
online matching [Antoniadis et al 20] convex body chasing [Christianson et al 21]
metrical task systems [Antoniadis et al 20] * linear quadratic control [Liet al 21]
Scheduling [Scully et al 22] « Online knapsack [Sun et al 22]

Bibliography of 130+ papers at https://algorithms-with-predictions.github.io/



This talk: Algorithm design & fundamental limits on the
use of learning-augmented algorithms.

Running Example: Convex Body Chasing



dist(xq,xp)









min z dist(x, x¢—1)
t

Xt+EB¢t



How do you decide where to move
without Rnowing the future?



Convex body chasing has a long history & many applications

Reductions to online convex optimization and online control. Applications to data centers, video
streaming, drone trajectory tracking, “learning to control” and “safe control”, among others.

Exciting algorithmic progress in recent years [Antoniadis et al 16], [Bansal et al 20], [Bubeck et
al 19], [Sellke 20], [Argue 20], [Bubeck et al 20], [Argue 21], ...

Theorem [Bubeck et al 20]. Moving to the Steiner point of the body each round obtains an
0(min(d, /d log(T)))-competitive ratio, and any online algorithms is Q(v/d ).

)Ldimension of action space




Convex body chasing has a long history & many applications

Reductions to online convex optimization and online control. Applications to data centers, video
streaming, drone trajectory tracking, “learning to control” and “safe control”, among others.

Exciting algorithmic progress in recent years [Antoniadis et al 16], [Bansal et al 20], [Bubeck et
al 19], [Sellke 20], [Argue 20], [Bubeck et al 20], [Argue 21], ...

Theorem [Bubeck et al 20]. Moving to the Steiner point of the body each round obtains an
0(min(d, /d log(T)))-competitive ratio, and any online algorithms is Q(v/d ).

Choices of algorithm are quite conservative. Advice can help.












But the advice could have been bad...



But the advice could have been bad...



When should an algorithm “switch” between the trusted/untrusted advice?

How much ‘memory” is needed to decide between trusted/untrusted advice?



Attempt 1: A switching algorithm

1. Follow the'untrusted advice §ntil total distance traveled is 7.
2. Follow the trusted advice unifl total distance traveled is 7.
3.3et7 < 2T Jats advice as

black boxes.



Attempt 1: A switching algorithm

1. Follow the untrusted advice until total distance travel
2. Follow the trusted advice until total distance traveled.is 7.
3.5etr « 27 and repeat.

Optimize to bias
toward consistency

o the switching algorithm is
rem. For nested convex body chasing,
e (1+ 8)-consistent & 0 (dD/&)-robust.

diameter of action space




Attempt 1: A switching algorithm

1. Follow the untrusted advice until total distance travel
2. Follow the trusted advice until total distance traveled.is
3.5etr « 27 and repeat. |

Optimize to bias
toward consistency

Theorem, Fof'nested gonvex body chasing, the switching algorithm s
+ &)-consistent & 0 (dD/&)-fobust. ,
-

—
“Bast of both worlds : Black-box Al/ML imbued with robustness guarantee.
Constant factor loss in robustness yields near-optimal consistency.




Theorem. For general convex body chasing, any switching
algorithm that is robust must be at least 3-consistent.

A Fundamental Limit

y chasing, the switching algorithm s
+ &)-consistent & 0 (dD/&)-fobust.




A Fundamental Limit Tthem. For ggneral convex body chasing, any syvitching
algorithm that is robust must be at least 3-consistent.

Theorem. For general convex body chasing, any

memoryless algorithm that is robust cannot have
non-trivial consistency.

Consistency better than if advice
had been ignored



Attempt 2: A Randomized Algorithm

Apply multiplicative weights a la [Blum & Burch 2000}

B,

Multiplicative Weights [Blum & Burch 2000]

Update weights for each expert

WH& _WALG (1 — B)Costee(ALG)/D

Update probability of following each expert
t+1 _ WALG;

pl /ZWALGL'
Switch to other expert with probability proportional to
mass transferred from pj; ;. to pﬁ{éj




Attempt 2: A Randomized Algorithm
Apply multiplicative weights a la [Blum & Burch 2000}

3120201, For general convex body chasing,

Theorem [ Antoniadis et
multiplicative weights has cost

(1 + &) - 4nCost(Untrusted) + 0(D/¥) [Consistency]

and
(1+6\): O(d)Cost(Opt) + 0

\

(D/8) [Robustness]

Aggregate prediction quality of
untrusted advice



Attempt 2: A Randomized Algorithm
Apply multiplicative weights a la [Blum & Burch 2000]

3120201, For general convex body chasing,

Theorem [ Antoniadis et
multiplicative weights has cost

(1 + 6) - 4nCost(Untrusted) + 0(D/¥) [Consistency]

and
(1+06)- O(d)Cost(Opt) + 0

—

V

Multiplicative Weights has been used to incorporate untrusted advice broadly.
(This result extends to metrical task systems, MTS. )

(D/8) [Robustness]

-




Attempt 2: A Randomized Algorithm

Apply multiplicative weights a la [Blum & Burch 2000}

(1 + &) -[0(d)Cost(0pt) + 0( / 5) [Robustness]

Diameter dependence




Attempt 3: Exploiting Convexity
Adaptively choose a convex combination of the two advice points.

Bt+1



Attempt 3: Exploiting Convexity

Adaptively choose a convex combination of the two advice points.

Bii1
Bicompetitive Line Chasing

If Costo¢(x)>6 - Costy(X)
then follow X,
Else, take a greedy step from X ;.. ; toward x;,
with a series of radial projections depending on
1 Costy¢(X)and dist (X, x¢).




Attempt 3: Exploiting Convexity

Adaptively choose a convex combination of the two advice points

Theorem, For general convex body chasing, the interpolation algorithm is

(\Z + 6)-consistent &0 (d/ ) 2)-robUS’t

Dependence on the diameter D is gone!




Attempt 3: Exploiting Convexity

Adaptively choose a convex combination of the two advice points

Theorem. £ 3| convex body chasing, the interpolation algorithm is

2 (V2430 onsistent & O (d /62)-obust.

Adding robustness means sacrificing performance of black-box Al

s this a fundamental limit?



A Fundamental Limit | Theorem. For general convex body chasing, givena C-
competitive algorithm, any (1 + &)-consistent

algorithm is 22(1/8) C-robust.

X
®

Xt = Xt+1
D

Bt+1
B,, diameter 2¢ diameter 2+




A Fundamental Limit | Theorem. For general convex body chasing, givena C-
competitive algorithm, any (1 + &)-consistent

algorithm is 22(1/8) C-robust.

Xt
.DIStance 2t
Xt = Xegr [ T
Xt41
Btyq
B,, diameter 2¢ diameter 2+

Key Property: Costg r+1(X) = dist(X¢y1, X¢41)
(Note: L1 distance, not Euclidean distance.)



A Fundamental Limit | Theorem. For general convex body chasing, givena C-
competitive algorithm, any (1 + &)-consistent

algorithm is 22(1/8) C-robust.

Xt
.DIStance 2t
Xt = Xegr [ T
Xt41
Bt+1
B,, diameter 21 diameter 2+

1. Any consistent algorithm must start following X ;.
2. No algorithm can move more than & /2 probability to x; inany round.

So,atT = 1/, only V2 probability can be on x,
which means the total cost is at least 27 = 21/9,



An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

DART
If Costy(x)>8/4 - Costy (%)
then follow X,

Else, update probability of followi ice
t+1 & SCOStt't(ft
Papy = Max (pAD VAl adist(%yx;) )

Sample action through optlmal t
(Wasserstein-1) for pj; . — pap LG




An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

Theorem. For general convex body chasing, DART is
(1 + &)-consistent and 2°(1/9) 0 (n)-robust.




An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

Theorem. For general convex body chasing, DART is
(1 + &)-consistent and 2°(1/9) 0 (n)-robust.

Theorem. For convex body chasing with bounded diameter DART
is (1 + &)-consistentand O (1/6)-robust with an additive

0(D/5).

Theorem. For metrical task systems DART is (1 + 6)-
consistent and2°1/9) 0 (log? n)-robust.

Theorem. For k-server, DART is (1 4+ &)-consistent and
O (k/&)-robust.

\ Theorem. For k-function chasingin IR, DARTis (1 + &)-
consistent and O (k /&)-robust.




An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

Theorem. For general convex body chasing, DART is
(1 + &)-consistent and 2°(1/9) 0 (n)-robust.

Theorem. For convex body chasing with bounded diameter DART
Matches state of the art | is (1 + &)-consistent and O (1/6)-robust with an additive

0(D/5).

Theorem. For metrical task systems DART is (1 + 6)-

15tw/o D dependence
g consistent and2°1/9) 0 (log? n)-robust.

Prior- O (1 /8%1 Theorem. For k-server, DART is (1 + &)-consistent and
0t OCL/0% ) 1 0 (ke /6)-robust

Theorem. For k-function chasing in IR, DARTis (1 + &)-

15tw/o D dependence :
consistent and O (k /&)-robust.
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Average cost

3500 A

3000 A

2500 A

2000 A

1500 A

Example: Capacity provisioning with on-site solar & storage

Al-based ‘

DART

Non-Al-based |

-1.0

=0.5 0.0 0.5

Sim-to-real gap / Distribution shift

1.0
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Normalized cost

Example: Co-generation plant with co-located wind generation

1.3-

1.2

114 Al-based | |
DART |

1.0 Non-Al-based

0.9-

v

-=1.0

=0.5 0.0 0.5

Sim-to-real gap / Distribution shift

1.0




This talk: Algorithm design & fundamental limits on the
use of learning-augmented algorithms.

Running Example: Convex Body Chasing

Applications: Carbon-aware data centers, co-generation
scheduling, voltage control, drone trajectory tracking, ...
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How should advice be used?
Switch between them? Combine them?
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Online Trusted Advice
Algorithm
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Meta Algorithm

7\

Can we move beyond robustness & consistency?
i Average-case? Smoothness? Frugality? Memory-dependence?




What quantity should be predicted?

Q'"'"g DaD Costs? Actions? Uncertainty
Pﬁﬂcation?

Untrusted Advice > f

ML/AI
B—

Online TrustedAdvice
Algorithm

Input




What if the
learning isn't 3
black box?

Input

(Training DaD

ML/AI

Trusted Advice

Meta Algorithm
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A teaser: Online voltage control with unknown grid topology

. =




Voltage (kV)

A teaser: Online voltage control with unknown grid topology
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ur Algorithm: Consistent Model Chasingia Nested Convex Body Chasing

Set of consistent models
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Design optimal controller, K{
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Set of consistent models
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Design optimal controller, K{




et of consistent models
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Design optimal controller, K,




Set of consistent models

1,5, X Design optimal controller, K3
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Theorem (informal): Under suitable assumptions, Consistent Model
| Chasing (CMC) guarantees stability of an unknown dynamical
system on 3 single trajectory with a finite mistake bound.
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Set of consistent models

1,5, X Design optimal controller, K3
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Theorem (informal): Under suitable assumptions, Consistent Model
| Chasing (CMC) guarantees stability of an unknown dynamical
system on 3 single trajectory with a finite mistake bound.

(g
~N

First single trajectory stabilization of an unknown adversarial system.

_J




Holds even in networked systems with communication delay
a.dversarial disturbances,
time varying models,
and distributed agents!

| Theorem (informal): Under suitable assumptions, Consistent Model
Chasing (CMC) guarantees stability of an unknown dynamical

system on 3 single trajectory with a finite mistake bound. B

g _J
~

First single trajectory stabilization of an unknown adversarial system.
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Case studies done using SustainGym
https://chrisyeh96.github.io/sustaingym/

New book on
| heavy tails!
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