Ultra-high Fidelity Controller Hardware-in-the-Loop (cHIL) Nanosecond resolution “flight simulator” for future grid

Typhoon HIL, Inc
Grid is becoming highly dynamic. **Power electronics systems** are driving the change.
Grid is becoming highly dynamic. **Power electronics systems** are driving the change.

Grid is an emerging **cyber-physical** system: smart inverters, distributed generation, micro-grids, distributed storage coupled with distributed control and communication.
Grid is becoming highly dynamic. **Power electronics systems** are driving the change.

Grid is an emerging **cyber-physical** system: smart inverters, distributed generation, micro-grids, distributed storage coupled with distributed control and communication.

Complexity of the cyber-physical system is driving the need for new test tools/methods.
Grid is becoming highly dynamic. **Power electronics systems** are driving the change.

Grid is an emerging **cyber-physical** system: smart inverters, distributed generation, micro-grids, distributed storage coupled with distributed control and communication.

Complexity of the cyber-physical system is driving the need for new test tools/methods.

Real-time Controller **Hardware-in-the-loop** (cHIL) simulation is becoming ubiquitous in power electronics and power systems.
Standard picture of the power grid
Standard picture of the power grid
Standard picture of the power grid
Emerging cyber-physical power grid
Approaches to control and communication testing in cyber-physical systems
Approaches to control and communication testing in cyber-physical systems
Approaches to control and communication testing in cyber-physical systems
Approaches to control and communication testing in cyber-physical systems
Approaches to control and communication testing in cyber-physical systems

Simulation

Controller HIL

Power HIL

Complete System
Approaches to control and communication testing in cyber-physical systems

Simulation

Controller HIL

Power HIL

Complete System
Approaches to control and communication testing in cyber-physical systems

Simulation

- Inv
- G
- C
- C
- DMS
- µC

Controller HIL

- Inv
- G
- C
- C
- DMS
- µC

Power HIL

- Inv
- G
- C
- C
- µC

Complete System

- Inv
- G
- C
- C
- DMS

Cost

- fidelity

Flexibility
Approaches to control and communication testing in cyber-physical systems

Simulation
- Inv
- G
- C
- C
- DMS
- μC

Controller HIL
- Inv
- G
- C
- C
- DMS
- μC

Power HIL
- Inv
- G
- C
- C
- μC

Complete System
- Inv
- G
- C
- C
- DMS
- μC

Cost
Fidelity
Flexibility

Cost
Fidelity
Flexibility
Approaches to control and communication testing in cyber-physical systems
Approaches to control and communication testing in cyber-physical systems

Simulation

Controller HIL

Power HIL

Complete System

<table>
<thead>
<tr>
<th>Inv</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>DMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inv</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>DMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inv</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>DMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inv</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>DMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inv</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>DMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>fidelity</th>
<th>flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>fidelity</th>
<th>flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>fidelity</th>
<th>flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>fidelity</th>
<th>flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>fidelity</th>
<th>flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>fidelity</th>
<th>flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approaches to control and communication testing in cyber-physical systems
Approaches to control and communication testing in cyber-physical systems

Controller HIL

Physical

Cyber

\(C \) \(\mu C \) \(DMS \)

Inv \ G

Cost

Fidelity

Flexibility
The new way of **TESTING** power electronics **controllers**. The **Controller Hardware-in-the-Loop (cHIL)** way.
The new way of **TESTING** power electronics controllers. The **Controller Hardware-in-the-Loop (cHIL)** way.
The new way of testing power electronics controllers. The Controller Hardware-in-the-Loop (cHIL) way.
The new way of **TESTING** power electronics controllers. The Controller Hardware-in-the-Loop (cHIL) way.
The new way of **TESTING** power electronics **controllers**. The **Controller Hardware-in-the-Loop (cHIL)** way.
The new way of **TESTING** power electronics controllers. The **Controller Hardware-in-the-Loop (cHIL)** way.
The new way of **TESTING** power electronics controllers.
The **Controller Hardware-in-the-Loop (cHIL)** way.
The new way of **TESTING** power electronics controllers. The **Controller Hardware-in-the-Loop (cHIL)** way.
The new way of **TESTING** power electronics controllers. The **Controller Hardware-in-the-Loop (cHIL)** way.
Ultra-high fidelity real-time simulation combined with ease of use is revolutionizing smart inverter testing
Ultra-high fidelity real-time simulation combined with ease of use is revolutionizing smart inverter testing.

Ultra-high fidelity: 20 ns PWM sampling, 0.5-1μs time step.
Ultra-high fidelity real-time simulation combined with ease of use is revolutionizing smart inverter testing.

Ultra-high fidelity: 20 ns PWM sampling, 0.5-1 µs time step

Easy to use
Ultra-high fidelity real-time simulation combined with ease of use is revolutionizing smart inverter testing.

Ultra-high fidelity: 20 ns PWM sampling, 0.5-1 μs time step

Easy to use

Plug and play interface to industrial controllers (customized)
The new way of TESTING Complete Systems.
The Controller Hardware-in-the-Loop way.
20ns sampling time, and 500ns simulation time step enables finding problems on μs to hours timescales
20ns sampling time, and 500ns simulation time step enables finding problems on μs to hours timescales
20ns sampling time, and 500ns simulation time step enables finding problems on μs to hours timescales
20ns sampling time, and 500ns simulation time step enables finding problems on µs to hours timescales.
Ultra-high fidelity via vertically integrated cHIL solution

OEM Control System

Software

Hardware

PLUG and PLAY

HIL Interface

HIL Software

HIL Hardware

HIL API

Typhoon HIL Solution
cHIL Advantage:
orders of magnitude better test coverage
orders of magnitude lower cost of testing
cHIL Advantage:
orders of magnitude better test coverage
orders of magnitude lower cost of testing
Should we be worried about reliability, availability, and stability of power systems?
Should we be worried about reliability, availability, and stability of power systems?

- Software is blamed for more major business problems than any other man-made product.
Should we be worried about reliability, availability, and stability of power systems?

- Software is blamed for more major business problems than any other man-made product.
- Poor software quality has become one of the most expensive topics in human history: > $150 billion per year in U.S.
Should we be worried about reliability, availability, and stability of power systems?

- Software is blamed for more major business problems than any other man-made product.
- Poor software quality has become one of the most expensive topics in human history: > $150 billion per year in U.S.
- Improving software quality is a key topic for all industries. Power systems included.
Differential analyzer, Vannevar Bush, MIT 1927
Test relentlessly.

Ivan Celanovic, Paul Roege, Dillon Lynch
ivanc@typhoon-hil.com

www.typhoon-hil.com