

E.ON Energy Research Center

Commissioning of the 4 MW Testing Facility for Wind Power Drives at RWTH Aachen University

Nov. 5th, 2015

Alexander Helmedag Uwe Jassmann Antonello Monti

E.ON Energy Research Center

- Investigation of wind turbine nacelles on a test bench exploiting:
 - Power Hardware in the Loop (PHIL) testing
 - Multi-Physics PHIL setup
 - System-Level testing environment
- Consideration of entire system up to limits of mutual component interactions

Nov. 5th, 2015ACSAutomation of Complex Power Systems2Alexander Helmedag

- Introduction
- System Level Nacelle Testing
- Test Setups and Results
- Conclusion

Center for Wind Power Drives

RNNTH		Aerodynamics, Control, Electrical and Mechanical Engineering combined in one Center				
			Directorate: CTO:	Abel, Brecher, De Do Hameyer, Monti, Jac Schelenz	Center for Wind Power Drives oncker, obs, Schröder	
	Prof. Abel	⊼IRTT ^{>}	Research Advisor Controls	ry Board: Industrial Companie	8	
	Prof. Brecher	RWTHAACHEN	Gears			
	Prof. De Doncker	1-Of Frenze Research Carlor RSS I restantion for Amain Secondaries and Interage Systems	Power Electronics			
	Prof. Hameyer		Generators			
	Prof. Monti	Kolo Grago Research Carlter ACL Longian RV Assessment of Carapter River Sectors	Grids			
	Prof. Schröder	AIR Account Actions RWTHAACHEN	Aerodynamics			
	Prof. Stich	RWTHAACHEN	Logistics		© 2011 rha reic	her haase architekten
			Prof. Jacobs	Chair for Wind Power Drives	CWD Chair for Wind Power Drives RWTHAACHEN	Systemdesigr & Test

E.ON Energy Research Center

- Since June 2006: Largest research co-operation in Europe between a private company and a university
- Five professorships in the field of energy technology across 4 faculties
- Research areas: energy savings, efficiency and sustainable power sources

ACS Institute for Automation of Complex Power Systems

EBC Institute for Energy Efficient Buildings and Indoor Climate

FCN Institute for Future Energy Consumer Needs and Behavior

Geothermal Energy

PGS Institute for Power Generation and Storage Systems

Nov. 5th, 2015ACSAutomation of Complex Power Systems5Alexander Helmedag

Institute ACS Research Areas

E.ON Energy Research Center

Applications

Smart Cities Future Energy Networks Center for Wind Drives Future Internet

Grid Operations

Fundamentals of Grid Dynamics Network Stability Hybrid DC/AC Networks Grid Monitoring Grid Automation Integration of Renewables

ICT 4 Energy

Energy as data-driven systems Distributed Computing for Complex System Simulation Distributed Intelligence for Energy Systems Cloud applications for energy Real-Time Systems

- System-Level Multi-Physics Power Hardware in the Loop testing emulates:
 - Forces and moments at rotor hub
 - Voltages at the power grid connection
 - Sensor interfaces
- Advantages of approach:
 - Deterministic
 - Repeatable
 - Time-invariant
 - High-load capable

CWD Center for Wind Power

E.ON Energy Research Center

Nov. 5th, 2015ACSAutomation of Complex Power Systems7Alexander Helmedag

Multi-Physics Power Hardware in the Loop

- Simulation environments of the interfaces depend on physical domain:
 - Electrical domain:
 - Mechanical domain:
 - Signal-level domain:

Simulator: RTDS Simulator: dSPACE

Simulator: dSPACE

Time Step: 50 μs *Time Step:* 10 ms *Time Step:* 10 ms

- Emulator Interface
- Mapping of simulation results from signal-level to power-level
- Enforcing the conservation of energy at the physical connection terminals

- Mapping of simulation results from signal-level to power-level
- Enforcing the conservation of energy at the physical connection terminals
- Equivalent mechanical-level interface (Rotational)

Emulator Interface

1 MW Setup

E.ON Energy Research Center

Nov. 5th, 2015 ACS Automation of Complex Power Systems

1 MW Test Bench Results

E.ON Energy Research Center

Test campaign with original wind turbine controller on the 1 MW test bench demonstrator in HIL operating mode

Nov. 5th, 2015ACSAutomation of Complex Power Systems12IAlexander Helmedag

4 MW Setup

E.ON Energy Research Center

Nov. 5th, 2015 | ACS Automation of Complex Power Systems 13 | Alexander Helmedag

4 MW Test Bench Overview

E.ON Energy Research Center

Mechanical Load Application

- PMSG Direct Drive
 - **E** Power: $P_n = 4000 \text{ kW}$
 - **E** Speed: $n_{max} = 30$ rpm
 - **Torque:** $T_n = 2,7$ MNm

- Wind Load Simulator
 - 5 DOF load application system
 - Force capacity: ~ 3 MN
 - Bending moment capacity: ~7 MNm

Nov. 5th, 2015ACSAutomation of Complex Power Systems16Alexander Helmedag

Simulated voltages at PCC

Simulation Mechanical Emulation

Nov. 5th, 2015ACSAutomation of Complex Power Systems18IAlexander Helmedag

Fault Ride Through Testing

- FRT-Converter advantages:
 - Generation of arbitrary voltage behavior up to limits of converter setup
 - \equiv In case of test bench testing:
 - = Extension of existing setup
 - Possible use for PHIL

E.ON Energy Research Center

Comparison of 1-MW and 4-MW test benches

	Power	1 MW	4 MW	
Electric Motor	Torque	395 kNm	2.7 MNm	
	Speed	29 rpm	30 rpm	
Load Application System	Thrust	480 kN	4 MN	
	Pitch Moment	168 kNm	7.2 MNm	
	Yaw Moment	194 kNm	7.2 MNm	
	Vertical Force	200 kN	3.25 MN	
	Horizontal Force	-	3.25 MN	
Power Converter System	Total Power	2.5 MVA	8 MVA (each, 24 MVA total)	
	Switching Frequency	2.5 kHz	1 kHz (each, interleaved)	
	Parallel Converters	4	3	

4 MW Test Bench Stage 1

E.ON Energy Research Center

Propagation of fault-voltage waveform in the test bench

Nov. 5th, 2015ACSAutomation of Complex Power Systems21Alexander Helmedag

DUT Behavior

CWD Center for Wind Power Drives

E.ON Energy Research Center

Nov. 5th, 2015ACSAutomation of Complex Power Systems22IAlexander Helmedag

- Concept of System-Level Multi-Physics Power Hardware in the Loop test bench for wind turbine nacelles has successfully been realized
- Interactions between electrical and mechanical side have been shown
- Wind turbine fully in operation with original controller on 1 MW test bench
- Stage 2 of 4 MW test bench fully in operation spring 2015

Thank you very much for you attention!

External Testing facility

FRT testing demands conform to FGW TR3 (based on [3])

Tolerance of the FRT voltage sag according to IEC 61400-21 (based on [7])

Inertia Emulation – Done wrong

