DISTRIBUTION SYSTEM REAL TIME SIMULATION

FIFTH ANNUAL INTERNATIONAL WORKSHOP ON GRID SIMULATOR TESTING

Nov. 2018
Outline

- Advancement in Distribution System Control operation
- Local Resource Aggregator concept
- Testing Local Resource Aggregator control
- Test Results
- Summary
Power Distribution System Transformation

- Integration of Primary Renewable DER assets:
 - Grid-scale Energy Storage (ES)
 - Grid-scale PV site

- Integration of Secondary-circuit DERs and Controllable Load Assets:
 - Behind-the-meter ES, PV
 - Electric Vehicle (EVs)
 - Direct load control (DLC)
Advanced Distribution System Control Operation

Market Operator

DMS - DSO - DERMS

SCADA Head-End

Regional Resource Aggregation Controller

Primary Assets + Local Aggregator

Secondary Circuit Assets

Local Resource Aggregation Controller
Local Resource Aggregator Concept of Operation

Local Objective:
- XFMR Thermal Limit - avoid overloading (Forward and Reverse)

System-level Objective:
- Power flow management in Primary
- Market participation
Local Resource Aggregator Test Setup

- Grid Simulator
- RTDS Test System
- Local Resource Aggregation Controller
- Impedance Box
- 240 V
- PV Load Bank
- Uncontrollable Load
- Test System Monitoring & Control
- IP Router
- Grid Simulator
- Local Resource Aggregation Controller
- Uncontrollable Load
- PV
- Load Bank
- PV Inverter 1
- PV Inverter 2
- Radio
- EV
- IP Router
Test Case - Reverse Power Flow (Description)

- **Scenario:**
 - PVs+ no EV+ Uncontrollable resistive Load
 - Transformer reverse limit met

- **Procedure:**
 - Sunny conditions for two PVs
 - Uncontrollable Resistive Load variation (Load step-wise decrease)

- **Expectation:**
 - PVs are curtailed evenly to mitigate reverse power flow overload
Test Case - Reverse Power Flow (Plots)
Test Case - Reverse Power Flow (controller UI)

Equal Curtailment of each PV
Test Case- Forward Power Flow (Description)

- **Scenario:**
 - PVs + EV + Uncontrollable resistive Load
 - Transformer forward limit met

- **Procedure:**
 - EV is not close to full charge
 - Sunny conditions for two PVs
 - Uncontrollable Resistive Load variation (Load increase)

- **Expectation:**
 - EV is curtailed to mitigate forward power flow overload
Test Case- Forward Power Flow (Plots)

- XFMR Active Power
 - Y to G

- PV Real Power (Generation)

- EV Real Power (Consumption)
 - EV curtailment

- Background Real Power Load (Consumption)
Test Case- Forward Power Flow (controller UI)

<table>
<thead>
<tr>
<th>DER Name</th>
<th>Index</th>
<th>Type</th>
<th>DER State</th>
<th>Comm state</th>
<th>Rating</th>
<th>Curtailment</th>
<th>P</th>
<th>P SP</th>
<th>Q</th>
<th>Q SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV1</td>
<td>1</td>
<td>EV</td>
<td>Enable</td>
<td>UP (0) UpTime: 118...</td>
<td>7.200 kVA</td>
<td>yes</td>
<td>2.160 kW</td>
<td>2.160 kW</td>
<td>0.000 kVAR</td>
<td>0.000 kVAR</td>
</tr>
<tr>
<td>PV1</td>
<td>3</td>
<td>PV</td>
<td>Enable</td>
<td>RETRY (1) Remain:...</td>
<td>5.000 kVA</td>
<td>no</td>
<td>4.745 kW</td>
<td>5.000 kW</td>
<td>0.000 kVAR</td>
<td>0.000 kVAR</td>
</tr>
<tr>
<td>PV2</td>
<td>2</td>
<td>PV</td>
<td>Enable</td>
<td>UP (0) UpTime: 131</td>
<td>5.000 kVA</td>
<td>no</td>
<td>4.753 kW</td>
<td>5.000 kW</td>
<td>0.000 kVAR</td>
<td>0.000 kVAR</td>
</tr>
</tbody>
</table>

EV Curtailment
Summary

- Hierarchy of resource aggregation and management in the advanced distribution system was discussed.
- Local Resource Aggregation control concept and objectives was described.
- Testing of Local Resource Aggregator through grid simulator and real-time digital simulation was discussed.
- Selected test results for Local Resource Aggregator functionality were presented.
Thank you!

Ahmad Momeni, Ph.D.
Principal Consultant,
Advanced Technology Integration
amomeni@quanta-technology.com

(919) 334-3000
quanta-technology.com
info@quanta-technology.com

Facebook.com/quanta-technology-LLC
@QuantaTech
Linkedin.com/company/quanta-technology