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Uncertainty pervasive too: interconnected world with

unstructured environments

complex, changing network dynamics

humans in the loop

contested scenarios, adversaries

´

Network Optimization is Pervasive 

Optimizing agent operation with limited network resources 

Grid of the future Intelligent transportation Disaster response 
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´

Basic Taxonomy for Network Optimization 

Simple, yet remarkably ubiquitous formulation in multi-agent applications 

minimize ‘aggregate objective function’(x) 

subject to ‘ineq constraints’(x) 

‘eq constraints’(x) 

Large-scale systems 

coupling might come from objective, constraints, or both 

individual agents may seek to find global solution or only own component 

coupling topology versus network topology: varying degree of sparsity all 
the way to non-sparse at all 

How do we solve optimization in a distributed way? 
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Optimizers of convex problems ⇔ saddle points of convex-concave Lagrangian

L(x , y , z) = f (x) + y>g(x) + z>(Ax − b)

Dynamical systems approach to algorithms

dynamical systems that solve problems
in linear algebra, systems, optimization

´

Distributed Solvers for Network Optimization 

Network optimization w/ distributed structure (widespread in multi-agent scenarios) 

nX 
minimize f (x) = fi (xi ) (separable objective) 

i=1 

subject to g(x) ≤ 0 

Ax = b (locally expressible) 
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Rich dynamical behavior

characterization of stability and convergence properties

appealing for large-scale systems: easily implementable
by individual agents

higher-order methods difficult to “distribute”, errors in
comm&sensing lead to errors in higher-order terms

´

Distributed Algorithm Design via Primal-Dual Dynamics 

Saddle points of L can be found via saddle-point dynamics 

ẋ = −rx L(x , y , z) 

ẏ = [ry L(x , y , z)]
+ 
y 

ż = rz L(x , y , z) 
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characterization of stability and convergence properties

appealing for large-scale systems: easily implementable
by individual agents

higher-order methods difficult to “distribute”, errors in
comm&sensing lead to errors in higher-order terms

´

Distributed Algorithm Design via Primal-Dual Dynamics 

Saddle points of L can be found via saddle-point dynamics X X∂fi ∂gα 
ẋi = − (xi ) − yα (xi , xNi ) − zβ Aβi

∂xi ∂xi
α β 

ẏα = [gα(x)]
+ 
yα X 

żβ = Aβj xj − bβ 

j 

From agent viewpoint, problem structure gives rise to distributed dynamics 
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A. Cherukuri, B. Gharesifard, and J. Cortés. Saddle-point dynamics: conditions for asymptotic stability of saddle points.

SIAM Journal on Control and Optimization, 55(1):486–511, 2017
N. K. Dhingra, S. Z. Khong, and M. R. Jovanović. The proximal augmented Lagrangian method for nonsmooth composite optimization.

IEEE Transactions on Automatic Control, 2018.

To appear

Systems & Control Letters, 87:10–15, 2016´

Stability of Primal-Dual Dynamics 
Saddle points not necessarily asymptotically stable 

Primal-dual dynamics for convex-concave F (x , z) = xz [Samuelson, 58] 

ẋ = −rx F (x , z) = −z 

ż = rz F (x , z) = x 

Saddle point (0, 0) is stable, not asymptotically stable -1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

x

z

Stream of results to understand asymptotic convergence & properties 

K. Arrow, L Hurwitz, and H. Uzawa. Studies in Linear and Non-Linear Programming. 

Stanford University Press, Stanford, California, 1958 
D. Feijer and F. Paganini. Stability of primal-dual gradient dynamics and applications to network optimization. 

Automatica, 46:1974–1981, 2010 
J. Wang and N. Elia. Control approach to distributed optimization. 

In Allerton Conf. on Communications, Control and Computing, pages 557–561, Monticello, IL, October 2010 
J. Wang and N. Elia. A control perspective for centralized and distributed convex optimization. 

In IEEE Conf. on Decision and Control, pages 3800–3805, Orlando, Florida, 2011 
J. Chen and V. K. N. Lau. Convergence analysis of saddle point problems in time varying wireless systems - control theoretical approach. 

IEEE Transactions on Signal Processing, 60(1):443–452, 2012 
E. Mallada, C. Zhao, and S. H. Low. Optimal load-side control for frequency regulation in smart grids. 

IEEE Transactions on Automatic Control, 62(12):6294–6309, 2017 
T. Holding and I. Lestas. Stability and instability in saddle point dynamics - Part I. 

2017. 

https://arxiv.org/abs/1707.07349 
T. Holding and I. Lestas. Stability and instability in saddle point dynamics - Part II: The subgradient method. 

2017. 

https://arxiv.org/abs/1707.07351 
A. Cherukuri, E. Mallada, and J. Cortés. Asymptotic convergence of constrained primal-dual dynamics. 
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´

LaSalle Functions for Asymptotic Convergence 

Positive-definite functions with negative semi-definite derivative 

distance to saddle point (x∗, y∗, z∗) 

Vd (x , y , z) = 1
2 

� 
kx − x∗k2 + ky − y∗k2 + kz − z∗k2

� 

magnitude of vector field 

Vm(x , y , z) = 1
2 (krx F (x , y , z)k2 + krz F (x , y , z)k2 X 

+ ((ry F (x , y , z))j )
2) 

j active 
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Global convergence under 

convexity-concavity plus local strong convexity-concavity 
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2 (krx F (x , y , z)k2 + krz F (x , y , z)k2 X 
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2) 

j active 

LaSalle arguments show convergence, but not enough for 

characterization of convergence rate 

dealing with errors in computation/comm/sensing 

characterization of robustness against disturbances 
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Lyapunov Function for Constrained Optimization

For f : Rn → R strongly convex, twice continuously differentiable,
g : Rn → Rp convex, twice continuously differentiable,

V (x , y , z) = 1
2
k(x , y , z)k2Saddle(F ) + Vm(x , y , z)

1 V positive definite with respect to Saddle(F )

2 V̇ negative definite: t 7→ V (x(t), y(t), z(t)) right-continuous, a.e. differentiable,

d
dt

V (x(t), y(t), z(t)) < 0 for t where derivative exists & (x(t), y(t), z(t)) 6∈ Saddle(F )

V (x(t0), y(t0), z(t0)) ≤ limt↑t0 V (x(t), y(t), z(t)) for all t0 ≥ 0

A. Cherukuri, E. Mallada, S. H. Low, and J. Cortés. The role of convexity in saddle-point dynamics: Lyapunov function and robustness.
IEEE Transactions on Automatic Control, 63(8):2449–2464, 2018

´

Beyond Asymptotic Stability 

Identification of Lyapunov functions of primal-dual dynamics 
—leading to systematic characterization of convergence properties 
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Real-time implementation of the dynamics

adjust stepsize opportunistically based on system state
aperiodic discrete-time implementation w/same convergence guarantees

Tracking in time-varying optimization problems, data-driven implementations

approx.dynamics = true dynamics + error

estimates/data in lieu of exact elements to close the loop/avoid expensive
centralized computations/circumvent complex dynamics
online formulations with tracking guarantees & handling of streaming data

´

Implications 

Algorithm robustness against disturbances 

true dynamics + disturbances 

characterization of input-to-state stability properties of primal-dual dynamics 
graceful performance degradation as a function of size of disturbance 
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´

Beyond Convergence #1: ISS with Respect to Saddle(F ) 

Robustness to errors in the gradient computation, noise in state measurements, 
errors in the controller implementation? 

Theorem (Equality-Constrained Optimization) 

For f strongly convex and C 2 , g = 0, with mI � r2f (x) � MI ∀x ∈ Rn , 
� 
ẋ 
ż 

� 

= 

�
−rx F (x , z) 
rz F (x , z) 

� 

+ 

�
ux 

uz 

� 

= 

�
−rf (x) − A>z 

Ax − b 

� 

+ 

�
ux 

uz 

� 

is ISS with respect to Saddle(F ) 

Proof: Vβ (x , z) = β 1 
1 k(x , z)k2 + β2Vm(x , z) is ISS-Lyapunov function 2 Saddle(F ) 
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´

Beyond Convergence #1: ISS with Respect to Saddle(F ) 

Robustness to errors in the gradient computation, noise in state measurements, 
errors in the controller implementation? 

Conjecture (Constrained Optimization) 

For f strongly convex and C 2 , g convex and C 2, with mI � r2f (x) � MI 
∀x ∈ Rn , 
⎡ 

⎣ 
ẋ 
ẏ
ż 

⎤ 

⎦= 

⎡ 

⎣ 
−rx F (x , y , z) 
[ry F (x , y , z)]+ 

y 
rz F (x , y , z) 

⎤ 

⎦+ 

⎡ 

⎣ 
ux 

uy 

uz 

⎤ 

⎦= 

⎡ 

⎣ 
−rf (x) − yT rg(x) − A>z 

[g(x)]+ 
y 

Ax − b 

⎤ 

⎦+ 

⎡ 

⎣ 
ux 

uy 

uz 

⎤ 

⎦ 

is ISS with respect to Saddle(F ) 

Proof: ISS-Lyapunov function theory for switched systems? 
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´

Example: Input-to-State Stability 

⎡
1 1

⎤ ⎡
2
⎤ 

f (x) = kxk2 , A = 1 0 and b = 1⎣ ⎦ , ⎣ ⎦ 

0 1 1 

� 
Saddle(F ) = (x , z) ∈ R2 × R3 | x = (1, 1), z = −(1, 1, 1) + λ(1, −1, −1), λ ∈ R 

f is C2, strongly convex, r2f (x) = 2I 

0 5 10 15 20 25

-3

-1

1

3

x1 x2 z1 z2 z3

0 5 10 15 20 25

0

1

2

3

saddle-point dynamics distance to saddle points 

Vanishing disturbance 
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Given sequence of triggering time instants {tk}∞k=0,

ẋ(t) = −rxF (x(tk), z(tk))

ż(t) = rzF (x(tk), z(tk))

for t ∈ [tk , tk+1) and k ∈ Z≥0

Objective: Design criterium to opportunistically select {tk}∞k=0 such that
feasible executions: inter-trigger times lower bounded by positive quantity

global asymptotic convergence is retained

-

´

Beyond Convergence #2: Real Time Implementation 

Opportunistic state-triggered implementation 

avoid continuous evaluation of the vector field 

adjust stepsize opportunistically based on state of the system 
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Opportunistic state-triggered paradigm

trade-offs: comp, comm, sensing, control

identify criteria to autonomously trigger actions
based on task – ‘active’ asynchronism

efficient implementations, incorporates uncertainty

´

Resource-Aware Control and Coordination 

Continuous or periodic implementation paradigm 

costly-to-implement synchronization for information 
sharing, processing, decision making 

‘passive’ asynchronism, fixed agent time schedules 

inefficient implementations for processor usage, 
communication bandwidth, energy 

Time

Agents

Time

Certificate
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´

A Picture (A Movie) is Worth a Thousand Words 
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Insights

feasibility: guaranteed monotonic decrease of function, but aperiodic executions
might not be feasible (accumulation of triggered times, Zeno)

certificate: LaSalle function clearly not good enough

trigger: specific challenges for network systems, both in design (local triggers) and
analysis (asynchronism, Zeno)

trigger: stabilization versus optimization

´

How to Decide When to Update? 

Simplified setup: system ẋ = f (x , u) on Rn with stabilization via 

controller: k : Rn → Rm 

certificate: Lyapunov function V : Rn → R 

Synthesis for ẋ = f (x , k(x̄)), w/ x̄ sampled version of x? 
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´

State-Triggered Implementation for Primal-Dual Dynamics 

Given sequence of triggering time instants {tk }∞ 
k=0, 

ẋ(t) = −rx F (x(tk ), z(tk )) 

ż(t) = rz F (x(tk ), z(tk )) 

for t ∈ [tk , tk+1) and k ∈ Z≥0 

Approach: Use Vβ to design criterium to opportunistically select {tk }∞ 
k=0 
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k=0, 

ẋ(t) = −rx F (x(tk ), z(tk )) 

ż(t) = rz F (x(tk ), z(tk )) 

for t ∈ [tk , tk+1) and k ∈ Z≥0 

Theorem 
For f strongly convex and C 2, with mI � r2f (x) � MI and 
x 7→ r2f (x) Lipschitz, A full row rank, 

trajectories of self-triggered dynamics converge to (x∗, z∗) 

inter-event times are lower bounded by positive quantity 
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´

Example: Self-Triggered Implementation 

F (x , z) = kxk2 + z(x1 + x2 + x3 − 1). 

f (x) = kxk2 satisfies hypotheses, A = [1, 1, 1] full row-rank 
1 1Saddle(F ) = {(( 13 , 3 , ), − 2 )}3 3 
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´

Beyond Convergence #3: Tracking in Time-Varying Opt 

Time-varying optimization problems 

minimize ft (x) 

subject to gt (x) ≤ 0 

ht (x) = 0 

ISS characterization leads to tracking guarantees 

lim sup 
τ →∞ 

k(x(τ ), y(τ), z(τ)) − (x ∗ (t), y ∗ (t), z ∗ (t))k ≤ γ(cδ) 

where γ is class K function and 

δ is upper bound on rate of change of saddle points 

k 
d 
dt 
(x ∗ (t), y ∗ (t), z ∗ (t))k ≤ δ 

c time scale of primal-dual dynamics 

d 
dτ 

= c 
d 
dt 
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Distributed primal-dual dynamics to solve
MPC formulation

Two groups of 5 cars enter network at
time 1 (red) and 3 (blue)

Capacity in cell 4 drops to zero at time
5 due to an accident

M. Vaquero and J. Cortés. Distributed augmentation-regularization for robust online convex optimization.
In IFAC Workshop on Distributed Estimation and Control in Networked Systems, pages 230–235, Groningen, The Netherlands, 2018

´

Dynamic Traffic Assignment 

Dynamic traffic assignment problem tunes traffic flows to optimize total travel 
distance, total travel time given time-varying inflows to network 

Cell transmission model 

x(t) – traffic volume in cells at time t 
f (t) – flows between cells at time t 
λ(t) – inflow to the network + 

µ(t) – outflow from the network 

supply&demand functions of infrastructure 
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´

Beyond Convergence #4: Coupled w/Network Dynamics 

Select optimized setpoints x (power injection of distributed energy resources, traffic flows 
among contiguous arterial roads) 

min f (x , y(x)) 

subject to g(x , y(x)) ≤ 0 

h(x , y(x)) = 0 

that drive physical y(x) (bus frequencies/voltages, traffic 
density) dynamics 

ξ̇ = Φ(ξ, x) 

y = Ψ(ξ, d) 

Implementation of primal-dual dynamics requires evaluation of y(x), 
∂
∂
x
y (x) 

substitute by data/high-fidelity sim/estimates ⇒ approx. primal-dual dynamics 
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´

Traffic Intersection Control 
with Simulation of Urban MObility (SUMO) simulator 

Stages 

Controlled traffic light (green-red stage time) 

Total cycle time = 160 sec, is = is time of stage i 

Flows = 10 cars/cycle, but and = 100 cars/cycle 

F(s) is number of cars out given s and flows 
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´

Data-driven Optimization of Stage Times 

SUMO is complex agent-based simulator that incorporates 

network characteristics: road topology, traffic lights, sidewalks 

number of vehicles entering network at any time and any lane 

destination of vehicles: route, turning ratios, origin/destination 

type of vehicle: car, truck, bus, van, bicycle, pedestrian (w/ length, width, 
acceleration, max speed) 

driver’s behavior: intersection model, lane changing model, car following model 

minimize − x 

subject to x = Ft (s) 
8X 

si = 160 
i=1 

si ≥ 5 

data-driven optimized strategy constant, equal stage times 

J. Cortes (UC San Diego) Distributed Solvers for Network Optimization April 11, 2019 24 / 38 



´

Data-driven Optimization of Stage Times 

SUMO is complex agent-based simulator that incorporates 

network characteristics: road topology, traffic lights, sidewalks 

number of vehicles entering network at any time and any lane 

destination of vehicles: route, turning ratios, origin/destination 
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driver’s behavior: intersection model, lane changing model, car following model 

minimize − x 

subject to x = Ft (s) 
8X 

si = 160 
i=1 

si ≥ 5 

data-driven optimized strategy adaptive signal control – Webster 
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´

Taking the Basic Taxonomy Further 

minimize ‘aggregate objective function’(x) 

subject to ‘ineq constraints’(x) 

‘eq constraints’(x) 

Hedging against uncertainty via data-driven distributionally-robust optimization 
A. Cherukuri and J. Cortés. Cooperative data-driven distributionally robust optimization. 
IEEE Transactions on Automatic Control, 2018. 
Submitted 

Protecting privacy of individual information via differential privacy 
E. Nozari, P. Tallapragada, and J. Cortés. Differentially private distributed convex optimization via functional perturbation. 
IEEE Transactions on Control of Network Systems, 5(1):395–408, 2018 

Multi-layer optimization: competition+coordination in power systems 
A. Cherukuri and J. Cortés. Iterative bidding in electricity markets: rationality and robustness. 
IEEE Transactions on Network Science and Engineering, 2018. 
Submitted 

P. Srivastava, C.-Y. Chang, and J. Cortés. Participation of microgrids in frequency regulation markets. 
In American Control Conference, pages 3834–3839, Milwaukee, WI, May 2018 

Dealing with non-sparse constraints through data 
C.-Y. Chang, M. Colombino, J. Cortés, and E. Dall’Anese. Saddle-flow dynamics for distributed feedback-based optimization. 
IEEE Control Systems Letters, 2019. 
Submitted 
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´

Hedging Against Uncertainty 

Stochastic optimization works well when distribution is known and datasets are large 

Risky with “uncertainty about uncertainty” 
Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓, x, y))
x +

✏sign(rxJ(✓, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x + b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

[Goodfellow, Shlens, Szegedy ’15] 
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3

[Goodfellow, Shlens, Szegedy ’15] 

Many scenarios w/decisions need to be made before large datasets can be collected 

deadlines imposed by performance or safety considerations 

timescale of system’s evolution faster than speed at which data can be collected 

acquiring samples is expensive: adversary purposely hides in environment 
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3

[Goodfellow, Shlens, Szegedy ’15] 

Traditional robust optimization might be overly conservative 

J. Cortes (UC San Diego) Distributed Solvers for Network Optimization April 11, 2019 26 / 38 



´

Hedging Against Uncertainty 

Stochastic optimization works well when distribution is known and datasets are large 

Risky with “uncertainty about uncertainty” 
Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓, x, y))
x +

✏sign(rxJ(✓, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x + b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

[Goodfellow, Shlens, Szegedy ’15] 

The best of both worlds: distributionally robust optimization 

empirical samples + ‘what-if’ scenarios 

Attractive b/c of formal guarantees valid for small datasets 
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Given N i.i.d samples {bξ k}Nk=1, discrete empirical probability distribution

P̂N =
1

N

NX
k=1

δbξ k

EP̂N [f (x , ξ)] =
1

N

NX
i=1

f (x , ξk)

Sample-average approximation has

almost sure convergence guarantee as N →∞
poor out-of-sample performance for small N

´

Network Optimization under Uncertainty 

Stochastic optimization: inf EP[f (x , ξ)]x∈X ⊂Rd 

objective f : Rd × Rm → R encodes network goal 
—total travel time, total distance covered, -network outflow 

decision variable x at central/aggregate/local level 
—max velocity, inflows at control nodes, routing at intersections 

random variable ξ distributed w/ unknown probability P 
—inflows/outflows at non-control nodes, road densities, vehicle locations 
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Desirable properties in ambiguity set

rich enough to contain true data-generating distribution with high confidence

small enough to exclude pathological distributions (avoid conservativeness)

easy to parameterize from data

facilitate tractable solution of optimization problem

´

Distributionally Robust Optimization 

Account for ignorance of true data-generating distribution P 

Distributionally robust (DRO) formulation to hedge against uncertainty 

inf sup EQ[f (x , ξ)] 
x∈X Q∈PbN 

bPN is ambiguity set of probability distributions 
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´

Ambiguity Sets Via Wasserstein Metric 

Wasserstein metric: cost of optimal transportation plan of probability mass 

2 
dW2 (Q1, Q2) = 

�
inf

nZ 
kξ1 − ξ2k2Π(dξ1, dξ2) 

�� Π ∈ H(Q1, Q2)
o� 1 

Ξ2 

—H(Q1, Q2) is set of distributions w/ marginals Q1 and Q2 

Q1 Q2 

Π is transportation plan for moving mass 
distribution 

norm k · k encodes transportation cost 
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Out-of-sample guarantee & tractability [Esfahani & Kuhn ’16]

Let bJN , bxN be optimal value, optimizer of DRO. Then
PN�EP[f (bxN , ξ)] ≤ bJN� ≥ 1− β

Additionally, if x 7→ f (x , ξ) convex ∀ξ ∈ Ξ, then bJN equal to convex optimization
inf

λ≥0,x∈X

n
λ�2N(β) +

1

N

NX
k=1

max
ξ∈Rm

�
f (x , ξ)− λkξ − ξ̂kk2

�o

´

Data-Driven DRO 

Ambiguity set via Wasserstein metric 

PbN = B�N (β)(P̂N ) 

Then, PN (P ∈ PbN ) ≥ 1 − β 
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inf 
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n 
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NX 
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´

Network Optimization Problem 

Cooperative network of n agents collecting data, communicating w/ neighbors, no 
central coordinator 

communication modeled by graph (V, E) 
each agent knows objective function f , constraint set X 

each agent gathers i.i.d samples Ξb i (Ξb i ∩ Ξb j = ∅) 

data available across network ∪n Ξb i = {ξbk }N 
i=1 k=1 

{ξ9, ξ10}

{ξ1, ξ2}

{ξ3, ξ4}

{ξ5, ξ6}{ξ7, ξ8}

f(x, ξ)

Leverage power-of-many to collectively improve out-of-sample guarantee 

individual agents can solve DRO with own data, but 

can benefit from others’ contributions to obtain higher-quality solution 
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| {z }
agreement on λi ’s

| {z }
agreement on xi ’s

Problems are equivalent (w/ f convex in x)

Given bxN , there exists λ∗ ≥ 0 s.t. (1n ⊗ bxN , λ∗1n) is optimizer of (?)

If (x∗v , λ
∗
v ) is optimizer of (?), then x∗v = 1n ⊗ bxN

Same optimal value bJN
Optimization (?) has separable objective & locally computable constraints!

´

Distributed Reformulation of Data-Driven DRO 

Each agent i with own estimate x i (and λi ) of optimal solution 

N (β)1
> N � ��2 X 
n λv 1 kmin + max f (x vk , ξ)−λvk kξ − ξb k2 

xv ,λv ≥0n n N ξ∈Rm 
k=1 

(?) 
subject to Lλv = 0n and (L ⊗ Id )xv = 0nd 

1 n(Here xv = (x ; . . . ; x ), λv = (λ
1; . . . ; λn )) 
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Augmented Lagrangian: (for better convergence properties)

Laug(xv, λv, ν, η) := L(xv, λv, ν, η) +
1

2
x>v (L⊗ Id )xv +

1

2
λ>v Lλv

= max
{ξ(k)}

L̃aug(xv, λv, ν, η, {ξ(k)})

L̃aug(xv, λv, ν, η, {ξ(k)}) :=
�2N(β)1

>
n λv

n
+

NX
k=1

�
f (xvk , ξ)−λvk kξ − bξkk2�

+ ν>Lλv + η>(L⊗ Id )xv +
1

2
x>v (L⊗ Id )xv +

1

2
λ>v Lλv

´

Modified Lagrangian 

Getting rid of inner maximization in Lagrangian 

λv 
N

N n�2 (β)1> X � � 
Lagrangian: L(xv, λv, ν, η) := + max f (x vk , ξ)−λvk kξ − ξbk k2 

n ξ∈Rm 
k=1 

+ ν>Lλv + η>(L ⊗ Id )xv 
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Correspondence between optima and saddle points

1 If (x∗v , λ
∗
v , ν

∗, η∗) is saddle point of L, then ∃ {(ξ∗)(k)} such that
((x∗v , λ

∗
v , ν

∗, η∗, {(ξ∗)(k)}) is saddle point of L̃aug over λv ≥ 0n

2 If ((x∗v , λ
∗
v , ν

∗, η∗, {(ξ∗)(k)}) is saddle point of L̃aug over λv ≥ 0n, then
(x∗v , λ

∗
v , ν

∗, η∗) is saddle point of L

L̃aug is convex-concave in ((xv, λv), (ν, η, {ξ(k)})) over domain λv ≥ 0n

´

Modified Lagrangian 

Saddle points of Laug exists implying 

min max Laug(xv,λv, ν, η) = max min Laug(xv, λv, ν, η) 
xv ,λv ≥0n ν,η ν,η xv ,λv ≥0n 
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assuming min-max operator on the right can be interchanged – requires formal proof
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´

When Can Max-Min Operator Be Interchanged? 

Theorem 
Assuming f satisfies technical condition on directions of recession. 
Max-min operator can be interchanged under either 

1 convex-concave objective function f 

2 convex-convex objective function f and 

quadratic in ξ, 

f (x , ξ) = ξ>Qξ + x >Rξ + `(x) 

least-squares problem (w/ d = m), 

f (x , ξ) = a(ξm − (ξ1:m−1; 1)
> x)2 

In either case, L̃aug is convex-concave in variables ((xv, λv), {ξ(k)}) 
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´

Distributed Algorithm for Network Optimization 

Primal-dual dynamics for L̃aug is distributed 

dxv (k)˜= − PrX (rxv Laug(xv, λv, ν, η, {ξ }))
dt 
dλv ˜= [−rλv Laug(xv, λv, ν, η, {ξ

(k)})]+ 
λvdt 

dν ˜= rν Laug(xv, λv, ν, η, {ξ(k)})
dt 
dη ˜= rη Laug(xv, λv, ν, η, {ξ(k)})
dt 

dξ(k) ˜= rξ(k) Laug(xv, λv, ν, η, {ξ
(k)}), ∀k ∈ {1, . . . , N}

dt 

L̃aug not necessarily strictly convex in (xv, λv), not linear in {ξk } 
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´

Distributed Algorithm for Network Optimization 

Primal-dual dynamics for L̃aug is distributed � �dx i 1 X 
i i k 

X 
i j i j= rxi gk (x , λ , ξ ) + (η − η ) + (x − x )

dt N 
k∈Ki j∈Ni h X X� �i+dλi �2 1N (β) i i k i j i j= + rλi gk (x , λ , ξ ) + (ν − ν ) + (λ − λ )

dt n N λi 
k∈Ki j∈Ni 

dν i X 
= aij (λ

i − λj )
dt 

j∈Ni 

dηi X 
= aij (x i − x j )

dt 
j∈Ni 

dξk 1 i i k = rξgk (x , λ , ξ ), ∀k ∈ Ki [gk (x , λ, ξ) := f (x , ξ) − λkξ − kk2]
dt N 
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´

Illustration 

data ξbk = ( wbk , ybk ) ∈ R4 × R: input-output pairs 
goal: find predictor x ∈ R5 such that x >(w ; 1) ∼ y 

quadratic loss f (x , ξ) = (x >(w ; 1) − y)2 

dataset: w ∼ N (0, I4), y = (1, 4, 3, 2) ∗ w + v , v 
uniformly distributed over [−1, 1] 
each agent 30 i.i.d samples (300 network samples) 
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evolution of optimizer estimates relative benefit of cooperation 
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´

Summary 

Conclusions 

network optimization via primal-dual dynamics 

Lyapunov function: distance to saddle-point set + magnitude of vector field 

robustness against disturbances, real-time state-triggered implementation, 
time-varying, data-driven formulations 

Current&Future work 

distributed regularization for strongly convex-concave 
formulations and impact on saddle points 

robust stability via ISS for general convex optimization 

nonconvex scenarios via sequential convex approx. 

dynamic ambiguity sets and online data-driven 
distributionally robust optimization 

trigger design for accelerated convergence 
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