Approximating Feasible Power Injection Regions of Radial AC Networks via Dual SOCP

Yue Chen¹, Changhong Zhao²

1. Mechanical and Automation Engineering
2. Information Engineering
The Chinese University of Hong Kong (CUHK)

ArXiv: 2109.02294. Funded by Hong Kong Research Grants Council (ECS No. 24210220)
Feasible power injection regions in AC networks

Nonlinear, nonconvex, implicit (intertwined with voltages, currents, line power flows, etc.)

A simple closed-form approximation is important for resilient grid applications, e.g.,
- Solve OPF quickly for fast-timescale control in grid restoration
- Decide hosting capacities of renewable energy sources

“Feasible”: the power injections and their associated voltages, currents, etc. satisfy:
- Physical laws of circuit “solvability”
- Operational limits “safety”
Prior efforts

DC approximation (convex polyhedral regions)
• Simple computation
• DC is coarse for distribution networks

AC solvability proved by fixed point theorems
- S. Bolognani, S. Zampieri, 2015. (Banach)
- C. Wang, A. Bernstein, J.-Y. Le Boudec, M. Paolone, 2016. (Banach)
- K. Dvijotham, H. Nguyen, K. Turitsyn, 2017. (Brouwer)
- J. W. Simpson-Porco, 2017. (Brouwer)
• Accurate AC models, reliable results
• How to incorporate safety limits?

Convex optimization for inner approximations
- M. Nick, R. Cherkaoui, J.-Y. Le Boudec, M. Paolone, 2017. (Tightened-relaxed SOC)
- N. Nazir, M. Almassalkhi, 2019. (Constant estimates for nonlinear terms)
• Both solvability and safety are addressed
• Explore feasible region in a specific shape/direction of the power-injection vector

A review:
Molzahn, Hiskens, 2017
[Chapter 4.5]
This work

A **closed-form polyhedral** approximation of feasible power injection regions in radial AC networks

- Simple form and moderate computation
- Built through *dual* second-order cone program (SOCP), a *convex* program that preserves nonlinearity of AC power flow
- Fulfills both *solvability and safety*
- No need to specify a shape/direction of power-injection vector
Problem statement

AC dist-flow equations for a radial network
(Solvability): [Baran, Wu, 1989]

\[\forall i \rightarrow j : \quad P_{ij} - r_{ij} \ell_{ij} - \sum_{k:j \rightarrow k} P_{jk} + p_j = 0 \quad (1a) \]

\[Q_{ij} - x_{ij} \ell_{ij} - \sum_{k:j \rightarrow k} Q_{jk} + q_j = 0 \quad (1b) \]

\[v_i - v_j - 2(r_{ij} P_{ij} + x_{ij} Q_{ij}) + (r_{ij}^2 + x_{ij}^2) \ell_{ij} = 0 \quad (1c) \]

\[P_{ij}^2 + Q_{ij}^2 - v_i \ell_{ij} = 0. \quad (1d) \]

Active/reactive power injections: \((p, q) \in \mathbb{R}^{2N}\)

State \(x := (v, \ell, P, Q) \in \mathbb{R}^{4N}\)

\(N = \) number of lines
\(= \) number of nodes excluding root/slack node

Safety limits:

\[v_i \leq \overline{v}_i, \quad \forall i = 1, \ldots, N \quad (2a) \]

\[0 \leq \ell_{ij} \leq \overline{\ell}_{ij}, \quad \forall i \rightarrow j \quad (2b) \]

\(\cdots\) nodal voltage magnitudes
\(\cdots\) on-line current magnitudes
Problem statement

AC dist-flow equations for a radial network
(Solvability): [Baran, Wu, 1989]

\[\forall i \to j : \quad P_{ij} - r_{ij} \ell_{ij} - \sum_{k:j \to k} P_{jk} + p_j = 0 \] \hspace{1cm} (1a)

\[Q_{ij} - x_{ij} \ell_{ij} - \sum_{k:j \to k} Q_{jk} + q_j = 0 \] \hspace{1cm} (1b)

\[v_i - v_j - 2(r_{ij} P_{ij} + x_{ij} Q_{ij}) + (r_{ij}^2 + x_{ij}^2) \ell_{ij} = 0 \] \hspace{1cm} (1c)

\[P_{ij}^2 + Q_{ij}^2 - v_i \ell_{ij} = 0. \] \hspace{1cm} (1d)

Safety limits:

\[v_i \leq v_i \leq \bar{v}_i, \quad \forall i = 1, ..., N \] \hspace{1cm} (2a)

\[0 \leq \ell_{ij} \leq \bar{\ell}_{ij}, \quad \forall i \to j \] \hspace{1cm} (2b)

Let \((p, q) = (d, u) \in \mathbb{R}^{2N}, \quad 2N = D + U\)

- Known constant injections: \(d \in \mathbb{R}^D\)
- Unknown variable injections: \(u \in \mathbb{R}^U\)

A power-injection vector \(u\) is \textit{feasible} if there exists \(x = (v, \ell, P, Q)\) such that \((x; d, u) = (x; p, q)\) satisfies (1)(2).

The \textit{feasible power injection region} is

\[\mathcal{U} := \{ u \in \mathbb{R}^U \mid u \text{ is feasible.} \} \]

Our goal: find a closed-form approximation of \(\mathcal{U}\)
Problem statement

AC dist-flow equations for a radial network
(Solvability): [Baran, Wu, 1989]

\[\forall i \to j : \quad P_{ij} - r_{ij} E_{ij} - \sum_{k : j \to k} P_{jk} + p_j = 0 \quad (1a) \]
\[Q_{ij} - x_{ij} E_{ij} - \sum_{k : j \to k} Q_{jk} + q_j = 0 \quad (1b) \]
\[v_i - v_j - 2(r_{ij} P_{ij} + x_{ij} Q_{ij}) + (r_{ij}^2 + x_{ij}^2) E_{ij} = 0 \quad (1c) \]
\[P_{ij}^2 + Q_{ij}^2 - v_i E_{ij} = 0. \quad (1d) \]

Safety limits:

\[v_i \leq v_i \leq \bar{v}_i, \quad \forall i = 1, \ldots, N \quad (2a) \]
\[0 \leq E_{ij} \leq \bar{E}_{ij}, \quad \forall i \to j \quad (2b) \]

Feasibility problem for \(u \):

\[\text{FP}(u) : \min \quad 1^T \bar{z} \]
\[\text{over} \quad x = (v, E, P, Q), \quad \bar{z} = (z_s, z_q, \bar{z}_q) \geq 0 \]
\[\text{s. t.} \quad A_f x + B_f u + \gamma_f = 0 \]
\[A_s x + \gamma_s \leq z_s \]
\[P_{ij}^2 + Q_{ij}^2 - v_i E_{ij} \leq z_{q,i}, \quad \forall i \to j \]
\[v_i E_{ij} - (P_{ij}^2 + Q_{ij}^2) \leq \bar{z}_{q,i}, \quad \forall i \to j \]

An equivalent definition of the feasible power injection region:

\[u = \{ u \in \mathbb{R}^U \mid \text{fp}(u) = 0 \} \]

where \(\text{fp}(u) \) is the min. obj. val. of \(\text{FP}(u) \)
Step 1: Convex relaxation of feasibility problem

Feasibility problem for u:

$$\text{FP}(u) : \min 1^T \tilde{z}$$

over $x = (v, \ell, P, Q), \quad \tilde{z} = (z_s, z_q, \bar{z}_q) \geq 0$

s. t. $A_f x + B_f u + \gamma_f = 0$

$A_s x + \gamma_s \leq z_s$

$P_{ij}^2 + Q_{ij}^2 - v_i \ell_{ij} \leq z_{q,ij}, \; \forall i \rightarrow j$

$$v_i \ell_{ij} - (P_{ij}^2 + Q_{ij}^2) \leq \bar{z}_{q,ij}, \; \forall i \rightarrow j$$

An equivalent definition of the feasible power injection region:

$$U = \{ u \in \mathbb{R}^U \mid \text{fp}(u) = 0\}$$

where $\text{fp}(u)$ is the min. obj. val. of $\text{FP}(u)$

SOCP relaxation:

$$\text{FP}'(u) : \min 1^T z$$

over $x, \; y, \quad z = (z_s, z_q) \geq 0$

s. t. $A_f x + B_f u + \gamma_f = 0$

$A_s x + \gamma_s \leq z_s$

$y = A_y x + b_y$

$$\|y_{ij}\|_2 \leq c_{q,ij} x + \gamma_{q,ij} + z_{q,ij}, \; \forall i \rightarrow j$$

SOCP-relaxed feasible region:

$$U' := \{ u \in \mathbb{R}^U \mid \text{fp}'(u) = 0\}$$

where $\text{fp}'(u)$ is the min. obj. val. of $\text{FP}'(u)$
Step 2: Dual SOCP

SOCP relaxation:

\[\text{FP}'(u) : \min 1^Tz \quad \text{Slack variables} \]
\[\text{over } x, y, z = (z_s, z_q) \geq 0 \]
\[\text{s. t. } A_f x + B_f u + \gamma_f = 0 \]
\[A_s x + \gamma_s \leq z_s \]
\[y = A_y x + b_y \]
\[\|y_{ij}\|_2 \leq c_{q,ij} x + \gamma_{q,ij} + z_{q,ij}, \forall i \rightarrow j \]

SOCP-relaxed feasible region:

\[\mathcal{U}' := \{ u \in \mathbb{R}^U \mid \text{fp}'(u) = 0 \} \]

where \(\text{fp}'(u)\) is the min. obj. val. of \(\text{FP}'(u)\)

Dual SOCP:

\[\text{DP}'(u) : \max_{\mu, \lambda} \mu_f^T (B_f u + \gamma_f) + \lambda_s^T \gamma_s - \mu_y^T b_y - \lambda_q^T \gamma_q \]
\[\text{s. t. } 0 \leq \lambda \leq 1 \]
\[A_f^T \mu_f + A_s^T \lambda_s = A_y^T \mu_y + c_q^T \lambda_q \]
\[\|\mu_{y,ij}\|_2 \leq \lambda_{q,ij}, \forall i \rightarrow j \]

Slater’s condition, i.e., (strict) feasibility holds for \(\text{FP}'(u)\) \quad \textbf{Strong duality}

An equivalent definition of the **SOCP-relaxed** feasible region:

\[\mathcal{U}' = \{ u \in \mathbb{R}^U \mid dp'(u) = 0 \} \]
\[= \{ u \in \mathbb{R}^U \mid D_u(\mu, \lambda) \leq 0, \forall (\mu, \lambda) \text{ satisfying (6)} \} \]

where \(dp'(u)\) is the max. obj. val. of \(\text{DP}'(u)\).

\(\mathcal{U}'\) is convex.
Step 3: Closed-form approximation of \mathcal{U}'

Algorithm 1: Approximate relaxed feasible region \mathcal{U}'

1. **Initialization:** $\mathcal{U}'_{poly} = \{ u \in \mathbb{R}^U | u \leq \overline{u} \}$ for sufficiently low \underline{u} and high \overline{u}; $\mathcal{V}_{safe} = \emptyset$; $c = 0$;
2. update vertices $\mathcal{V}(\mathcal{U}'_{poly})$. Let $dp'_{max} = 0$;
3. for $u \in \mathcal{V}(\mathcal{U}'_{poly})$ and $u \notin \mathcal{V}_{safe}$ do
 solve $DP'(u)$ to obtain an optimal solution (μ^*, λ^*) and maximum objective value $dp'(u)$;
 if $dp'(u) > dp'_{max}$ then
 $dp'_{max} \leftarrow dp'(u)$;
 $(\mu_{max}, \lambda_{max}) \leftarrow (\mu^*, \lambda^*)$;
 else if $dp'(u) \leq 0$ then $\mathcal{V}_{safe} = \mathcal{V}_{safe} \cup \{u\}$;
4. end
5. if $dp'_{max} = 0$ or $c = C_{max}$ then
 return \mathcal{U}'_{poly};
6. else
 add to \mathcal{U}'_{poly} a cutting plane:
 $\mu_{f,\max}^T (B_f u + \gamma_f) + \lambda_{\max}^T \gamma_u \leq 0$;
 $\mu_{y,\max}^T b_y + \lambda_{\max}^T \gamma_q$;
 $c \leftarrow c + 1$;
 go back to Line 2;
7. end

Main idea of Alg. 1:

- Start with an over-estimate convex polyhedron;
- Traverse its vertices; for each vertex u, solve $DP'(u)$; if $dp'(u) \leq 0$, then $u \in \mathcal{U}'$ and is not checked again.
- Record the vertex u with highest $dp'(u) > 0$, i.e., violating \mathcal{U}' the most; add a cutting plane to remove this u; update polyhedron and vertices;
- Terminate Alg. 1 if $dp'(u) \leq 0$ for all vertices u (or if maximum number of iterations is reached); otherwise Repeat.

$$U' = \{ u \in \mathbb{R}^U \mid dp'(u) = 0 \} = \{ u \in \mathbb{R}^U \mid \mathcal{D}_u(\mu, \lambda) \leq 0, \forall (\mu, \lambda) \text{ satisfying (6)} \}$$
Step 3: Closed-form approximation of \mathcal{U}'

Proposition 3. The output $\mathcal{U}'_{\text{poly}}$ in an arbitrary iteration of Algorithm 1 is an outer approximation of \mathcal{U}'.

$dp'(u) = 0$, i.e., $u \in \mathcal{U}'$, for all vertices u

Proposition 4. If Algorithm 1 terminates with $dp'_{\text{max}} = 0$ in a finite number of iterations, then it returns a convex polyhedron $\mathcal{U}'_{\text{poly}} = \mathcal{U}'$.

Corollary: If \mathcal{U}' is not a polyhedron, then Algorithm 1 cannot terminate in a finite number of iterations with $dp'_{\text{max}} = 0$.

Step 4: Removing **SOCP-inexact** injections from \mathcal{U}'

Proposition 5. For every $u' \in \mathcal{U}'$, there must be $u \leq u'$ (element-wise), such that $u \in \mathcal{U}$.

Consistent with the “load over-satisfaction” condition for exact SOCP relaxation of OPF

Definition 2. A power injection $u \in \mathcal{U}'$ is **SOCP-inexact**, if every optimal solution of $\mathcal{F}^{'}(u)$ satisfies:

$$\|y_{ij}\|_2 < c_{q,ij}x + \gamma_{q,ij} \text{ for some } i \to j.$$

The SOCP-inexact power injection region is:

$$\tilde{\mathcal{U}} = \{u \in \mathcal{U}' \mid u \text{ is SOCP-inexact}\}.$$
Step 4: Removing **SOCP-inexact** injections from U'

Definition 2. A power injection $u \in U'$ is **SOCP-inexact**, if every optimal solution of $FP'(u)$ satisfies:

$$\|y_{ij}\|_2 < c_{q,ij}x + \gamma_{q,ij} \quad \text{for some } i \rightarrow j.$$

The **SOCP-inexact power injection region** is:

$$\tilde{U} = \{ u \in U' \mid u \text{ is SOCP-inexact} \}.$$

An approximate definition from Dual SOCP:

$$\tilde{U}_d := \{ u \in U' \mid \text{Every optimal solution of } DP'(u) \text{ satisfies } \lambda_{q,ij} = 0 \text{ for some } i \rightarrow j \}.$$

Due to complementary slackness, $\tilde{U} \subseteq \tilde{U}_d$.

Focus on \tilde{U}_d as a good approximation of \tilde{U}.

Step 4: Removing **SOCP-inexact** injections from \mathcal{U}'

Algorithm 2: Approximate \tilde{U}_d (or SOCP-inexact \hat{U})

1. **Initialization:** \tilde{U}_p = \mathcal{U}_p returned by Algorithm 1.

 Given $\delta \in \mathbb{R}_+^N$, $\eta, \eta' \in \mathbb{R}_+$; $\mathcal{V}_{safe} = \emptyset$; $c = 0$;

2. update vertices $\mathcal{V}(\tilde{U}_p)$. Let $d_{p_{max}}' = -\eta$;

3. for $u \in \mathcal{V}(\tilde{U}_p)$ and $u \notin \mathcal{V}_{safe}$ do

 4. solve DP''(u, δ) to obtain an optimal solution (μ^*, λ^*) and maximum objective value $d_{p_{max}}''(u, \delta)$;

 5. if $d_{p_{max}}''(u, \delta) > d_{p_{max}}''$ then

 6. $d_{p_{max}}'' \leftarrow d_{p_{max}}''(u, \delta)$;

 7. $(\mu_{max}, \lambda_{max}) \leftarrow (\mu^*, \lambda^*)$;

 8. else if $d_{p_{max}}''(u, \delta) \leq -\eta$ then

 9. $\mathcal{V}_{safe} = \mathcal{V}_{safe} \cup \{u\}$;

 10. if $d_{p_{max}}'' = -\eta$ or $c = C_{max}$ then

 11. return \tilde{U}_p;

 12. else

 13. add to \tilde{U}_p a cutting plane:

 $\mu_{f_{max}} B_f u + \gamma_f + \lambda_{f_{max}} q_s \leq 0$

 $\mu_{y_{max}} b_y + \lambda_{q_{max}} q - \eta'$;

 14. $c \leftarrow c + 1$;

 15. go back to Line 2;

end

Tighten the dual feasible set to exclude $\lambda_q = 0$:

$$\lambda_q \geq \delta$$

For $u \in \tilde{U}_d$, the **tightened** Dual SOCP $DP''(u, \delta)$ should attain max. value **strictly** lower than 0.

In Alg. 2, this requirement is represented by

$$d_{p_{max}}''(u, \delta) \leq -\eta < 0$$
Step 4: Removing **SOCP-inexact** injections from U'

Alg. 2 returns a *convex polyhedral* approximation of \tilde{U}_d (or \tilde{U});

However, \tilde{U} is generally nonconvex;

Moreover, output of Alg. 2 is sensitive to (δ, η).

Proposed heuristic:

- Run Alg. 2 multiple times with different (δ, η)
- In each run, δ is a nonnegative perturbation to the dual optimal at one vertex of U'_poly (from Alg. 1)
- The union of multiple Alg. 2 outcomes serves as an approximation of \tilde{U}
Preliminary numerical results

Alg. 1 converges in 26 iterations (263 seconds) to the SOCP-relaxed feasible region \mathcal{U}'

Max. dual obj. value over all the vertices
Preliminary numerical results

Left: Feasible region U and its SOCP relaxation $U' = U \cup \tilde{U}$ found by checking sample points (close to actual cases)

Right: Alg. 1 output removing multiple Alg. 2 outputs.
Summary

A closed-form polyhedral approximation of feasible power injection regions in radial AC networks

- Model: nonlinear dist-flow
- Feasibility problem \rightarrow SOCP relaxation \rightarrow Dual SOCP \rightarrow relaxed feasible region (Alg. 1)
- Heuristic to remove SOCP-inexact power injections (Alg. 2)
- Preliminary numerical results: simple form, moderate computation, relatively accurate

Limitations and future work: A better-justified design (rather than empirical heuristic) to remove SOCP-inexact power injections