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Phasor Measurement Units (PMU) 

PMUs provide synchronized measurements of bus voltage phasors, line 
current phasors, and frequency in power systems. 

High sampling rate of 30 or 60 samples per second per channel. (One 
sample every 2-4 seconds in the traditional SCADA systems) 

2500+ PMUs in North America in 2017. 

Provide better visibility of dynamics of power system operations. 

Figure 1: The comparison of installed PMUs in North America between 2011 and 2017 1 

1 
https://www.sgsma2021.org/wp-content/uploads/2021/05/QTech-SGSMA-Silver-Sponsor-Slides-May-25-2021-

Updated2.pdf 
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PMU Data Quality Issues 

Data losses and errors resulting from communication congestions and device 
malfunction. 

California Independent System Operator [CAISO 2011] reported that 
10%-17% of data in 2011 had availability and quality issues. 

Limited incorporation into the real-time operations 

Figure 2: Missing data examples. (Data from New York Independent System Operator (NYISO)) 

Ming Yi (CU & RPI) 2 / 30 



Problem Formulation 

Y: ground-truth measurements with m channels and n time instants, 

Y = [y1, y2, ..., yn] ∈ Rm×n 

Matrix Y o ∈ Rm×n: the observed data 

Yi
o 
,j = Yi ,j + Ei ,j + Ni ,j (i , j) ∈ Ω 

Ei ,j : bad data, Ni ,j : noise, Ω: observed entries. 

The objective of robust matrix completion is to recover Y from partial 
observations Y o that contain bad data and noise.i ,j 
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Luckily, many data matrices exhibit low-dimensional structures.

Low-Rank Matrix Completion 

The objective of matrix completion is to recover data matrix from partial 
observations.   

5 ? 7 ? 
10 12 ? 16 
? 18 21 ? 
20 ? ? 32 

 

Without a prior knowledge of the matrix, this problem is ill-conditioned. 
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Low Dimensionality of PMU Data 

6 PMUs measure 37 voltage/current phasors. 30 samples/second. 
(Data source: New York Power Authority (NYPA)) 

A generator trip event in New York state. 

Figure 3: PMUs in Central NY Power Systems Figure 4: Voltage magnitudes of PMU data 
[Gao et al. 2016] [Hao et al. 2018] 
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Simultaneous and Consecutive Data Losses 

The standard low-rank methods cannot handle the simultaneous and 
consecutive missing data, i.e., M2 and M3 modes, even when the data 
matrix is low rank. 

Figure 5: Three diferent missing data modes 
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Low-rank Hankel Property of PMU data 

Y: m channels and n time instants, 

Y = [y1, y2, ..., yn] ∈ Rm×n Hankel low-rank property: 

Hankel structure:   

y1 y2 · · · yn1 

y2 y3 · · · yn1+1 
. . . . . . . . ... . 
yn2 yn2+1 · · · yn 

Hn2 (Y ) = 

Figure 6: Normalized approximation 
errors of Hankel matrices 

(Y ) ∈ Rmn2×n1Hn2 and 
n1 + n2 = n + 1 
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Related Work 

Low-rank matrix completion [ Gao et al. 2016; Hao et al. 2018; 
Zhang et al. 2018] 
• Lack confdence measure for the returned results 
• Provide theoretical guarantee but the bound underestimates the 
methods’ capabilities 

Bayesian matrix completion [Babacan et al. 2012, Chen et al. 2021] 
• Fail when simultaneous and consecutive data is missing and/or 
corrupted across all channels 

• Have no uncertainty modeling for the returned results 
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Methodology 2 

Figure 7: An overall illustration of the proposed approach. 

2 
Ming Yi, Meng Wang, Evangelos Farantatos, and Tapas Barik. ”Bayesian Robust Hankel Matrix Completion with 

Uncertainty Modeling for Synchrophasor Data Recovery” ACM Energy Informatics Review, 2022 
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Bayesian Hankel Matrix Completion 3 

Hierarchical model: 

Yi
o 
,j = (H†X )i ,j + Ei ,j + Ni ,j (i , j) ∈ Ω, 

X = UV ⇔ x = UV.q .q, 

(H†X )i ,j : the inverse of Hankel matrix 
V.q: qth column in V , x.q: qth column in X 
Up.: pth row in U, IK : K × K identity matrix 

Up. ∼ N (0, λ−1IK ),d 

V.q ∼ N (0, γ−1 
s IK ) γs ∼ Γ(c0, d0) 

Ei ,j ∼ N (0, β−1)i ,j (i , j) ∈ Ω βi ,j ∼ Γ(g0, h0) 

Ni ,j ∼ N (0, γ−1)ϵ 
γϵ ∼ Γ(e0, f0) 

3 
Ming Yi, Meng Wang, Evangelos Farantatos and Tapas Barik. “Bayesian Robust Hankel Matrix Completion with 

Uncertainty Modeling for Synchrophasor Data Recovery” ACM Energy Informatics Review, 2022 
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The mean feld variational inference [Bishop 2006] is employed to
approximate P(Θ,Y |Y o

Ω) by the variational distribution q(Θ).

Mean feld theory assumes that elements in Θ are mutually independent

q(Θ) = q(U)q(V )q(E )q(β)q(γs)q(γϵ)

Variational Inference 

Given YΩ 
o , we aim to compute the posterior P(Θ, Y |Y o ). From the Bayes’ Ω 

rule, 
P(Θ, Y , Y o )ΩP(Θ, Y |YΩ 

o ) = 
P(Y o )Ω 

Θ denotes all the latent variables. The posterior distribution is intractable. 
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Variational Inference 

Variational inference: fnd the closest approximation q(Θ) to P(Θ, YΩ|Y o )Ω 

q(Θ) = argmin KL(q(Θ)||P(Θ, Y |YΩ 
o )) 

q(Θ) 

= argmax E[ln P(Θ, Y , YΩ 
o )] − E[ln q(Θ)] 

q(Θ) 

The optimal q(Up.) which maximizes the objective function is 

ln q(Up.) = Eq(Θ\Up.)[ln P(Θ, Y , YΩ 
o )] + constant 

Eq(Θ\Up.) : expectation with all the latent variables except Up. 
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Monte-Carlo integration [Paisley et al. 2012] is employed to compute the mean and variance
approximately

Uncertainty Modeling 

Goal: estimate the distribution of Yi ,j 

Mean: the estimation of Yi ,j 

Variance: model uncertainty of the estimation 

It is intractable to obtain the closed-form of the distribution of Yi ,j Z 
E[Yi,j ] = p(Yi,j |Y o )Yi,j dYi,jΩ Z Z 

= ( p(Yi,j |θ)p(θ|Y o )dθ)Yi,j dYi,jΩ Z 
= Ep(Yi,j |θ)[Yi,j ]p(θ|Y o )dθΩ Z 
= f θ (Yi,j )p(θ|Y o )dθΩ 

≈ 
1 

L 

l=LX 
f θl (Yi,j ) 

l=1 

θl ∼ q(θ|Y o )Ω 
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Uncertainty Modeling 

f θ(Yi ,j ) = H†(UV )i ,j θ = {U, V , γϵ} 

Predictive mean 

l=LX1
Ŷi ,j = E[Yi ,j ] ≈ f θl (Yi ,j ) θl ∼ q(θ|YΩ 

o )
L 

l=1 

L : number of Monte-Carlo samples 
Predictive variance 

Var [Yi,j ] = E[Yi 
2 
,j ] − E[Yi,j ]

2 

l=L l=L l=LX X X1 1 1 1 
≈ + f θl (Yi,j )

2 − ( f θl (Yi,j ))
2 θl ∼ q(θ|Y o )

L γϵ L L Ω 
l=1 l=1 l=1 

E[Yi ,j ]: an estimate Ŷi ,j of Yi ,j , Var [Yi ,j ]: uncertainty index of the 
estimation. 
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Block Processing 

Handling streaming data in real-time: 

Truncate the measurements into blocks and process each time block 
separately. 

Use a sliding window with length n and step size s. 

Figure 8: Non-overlapping and overlapping sliding windows 

Ming Yi (CU & RPI) 15 / 30 



Numerical Experiments (Practical PMU Data) 

Case 1: 20% M2 missing data. Additional Gaussian noise N (0, 0.0032) is added during 
time 5.6 to 6.6 seconds 

Case 2: 20% M1 and 15% B1 bad data 

Figure 9: The recovery performance on case 1, 4 fgures are (a) the observed data, (b) the 
estimated data, (c) the estimated data in one channel (d) the uncertainty index for the channel 
in (c) 

Figure 10: The recovery performance on case 2 
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Remaining Issues 

Recovery performance degrades signifcantly when the power system 
is experiencing nonlinear dynamics during signifcant events. 

(a) (b) (c) (d) 

Figure 11: (a) the ground truth data, (b) the observed data, the estimated data by (c) the 
proposed method, (d) the deterministic low-rank Hankel data recovery method [Zhang et al. 
2019]. 
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Related Work 

Bayesian synchrophasor data recovery [Yi et al. 2022] 
• Time-consuming for block processing 
• The linear dynamical system assumption becomes inaccurate 
when handling nonlinear dynamics 

High-rank matrix completion [Ongie et al. 2017; Fan et al. 2018; Fan 
et al. 2019] 
• Lacks confdence measure for the returned results 
• Cannot handle simultaneous and consecutive missing data across 
all channels 

• Cannot handle the bad data 

Nonlinear synchrophasor data recovery [Hao et al. 2019] 
• Lacks confdence measure for the returned results 
• Sensitive to the parameter selection 
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Kernel Idea 

Figure 12: An overall illustration of the kernel method. 

2 2y1i + y = 1 z1i + 0 × z2i + z3i = 12i  � � z11 z12 · · · z1n y11 y12 · · · y1n  Y = Z = z21 z21 · · · z2n y21 y21 · · · y2n ⇒ · · · z3nz31 z31 
full rank 

rank is two 
Mapping function: ϕ : R2 −→ R√ 

3 

2 2(y1i , y2i ) 7→ (z1i , z2i , z3i ) = (y 2y1i y2i , y )1i , 2i 
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Lifted low-rank Hankel property:

Figure 13: Normalized approximation
errors of Hankel/lifted Hankel matrices

Lifted Low-rank Hankel Property of PMU Data 

Lifted Hankel structure:  
z1 z2 ... zn1 

z2 z3 ... zn1+1 
 

Hn2 (Z ) = . . . . . . . . ... . 
zn2 zn2+1 ... zn 

(Z ) ∈ RMn2×n1where zi = ϕ(yi ), Hn2 

1 KYY (i , j) = ϕ(yi )
T ϕ(yj ) = exp(− ||yi − yj ||22)2c 

c : kernel parameter 
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Methodology 4 

Figure 14: An overall illustration of the Bayesian high-rank matrix completion approach. 

4 
Ming Yi, Meng Wang, Tianqi Hong and Dongbo Zhao, ”Bayesian High-Rank Hankel Matrix Completion for Nonlinear 

Synchrophasor Data Recovery” IEEE Transactions on Power System, 2023 
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Bayesian High-Rank Hankel Matrix Completion 

Hierarchical model: 

Yi
o 
,j = (H

†X )i,j + Ei,j + Ni,j (i , j) ∈ Ω, 

Φ(X ) = Φ(U)V ⇔ Φ(x.q ) = Φ(U)V.q , 

(H†X )i,j : the inverse of Hankel matrix, V.q : qth column in V , x.q : qth column in X . 
U.k : kth column in U, IK : K × K identity matrix 

1 
U.k ∼ N (0, Im), 

γu 

1 
X.q ∼ N (0, Im)

γx Ei,j ∼ N (0, β−1) (i , j) ∈ Ωi,j
1 

V.q ∼ N (0, IK ) βi,j ∼ Γ(g0, h0)γv 
γy ∼ Γ(e0, f0)1 

Ni,j ∼ N (0, )
γy 

1 
KXU (q, k) = Φ(X.q )

T Φ(U.k ) = exp(− ||X.q − U.k ||22)2c2 

1 
KUU (i , j) = Φ(U.i )

T Φ(U.j ) = exp(− ||U.i − U.j ||22)2c3 
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Technical Challenges 

Variational inference: fnds the closest approximation q(Θ) to 
P(Θ, YΩ|Y o )Ω 

q(Θ) = argmax E[ln P(Θ, Y , YΩ 
o )] − E[ln q(Θ)] 

q(Θ) 

The optimal q(θi ) which maximizes the objective function is 

� Z 
q(Θi ) = argmax q(Θi )Eq(Θ\Θi )[ln p(Θ, Y , YΩ 

o )]d(Θi ) 
q(Θi )Z � 

− q(Θi )ln q(Θi )dΘi 
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We assume U.k and X.q are drawn from Gaussian distributions. Take U.k

as an example,

q(U.k) ∼ N (µU.k
,ΣU.k

)

The problem is simplifed to fnd the corresponding mean and the variance
of each variable.
How to diferentiate and optimize the objective function with
respect to the mean and the variance?

Technical Challenges 

U.k and X.q are lifted to a higher dimensional space via the kernel method, 
no analytical solutions. 
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Reparameterization Trick 

The reparameterization trick [Kingma et al. 2013] is employed here to 
make the Monte-Carlo estimation diferentiable with respect to U.k . 

(a) R R 
q(U.k ) = arg max q(U.k )Eq(Θ\U.k )[ln p(Θ, Y , YΩ 

o )]d(U.k )− q(U.k )ln q(U.k )dU.k . 
q(U.k ) 

(b) R 
= arg max q(U.k )Eq(Θ\U.k )[ln p(Θ, Y , YΩ 

o |U.k )]d(U.k )−KL(q(U.k )|p(U.k )). 
q(U.k ) 

(c) 
1 PJ (l)≈ arg max l Eq(Θ\U.k )[ln p(Θ, Y , YΩ 

o |U .k )]−KL(q(U.k )|p(U.k )).J 
q(U.k ) 

(l) 
ϵ(l)U = µU +ΣU.k .k .k 

ϵ: auxiliary noise variable, ϵ(l) ∼ N (0, Imn2 ). 
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Uncertainty Modeling 

Predictive mean: 

LX1
Ŷi ,j = E[Yi ,j ] ≈ (H†X (l))i ,j X (l) ∼ q(X |YΩ 

o )
L 

l=1 

L : number of Monte-Carlo samples 
Predictive variance: 

Var [Yi,j ] = E[Yi 
2 
,j ] − E[Yi,j ]

2 

L L LX X X1 1 1 1 
≈ + (H†X (l))2 (H†X (l))i,j )

2 
(l) i,j − (

L L Lγl=1 y l=1 l=1 

E[Yi ,j ]: an estimate Ŷi ,j of Yi ,j 

Uncertainty index 
m nXX 

Uindex = ( Var [Yi ,j ])/(mn) 
i=1 j=1 
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Numerical Experiments (Practical PMU Data) 
Case study: 6.7% M3 missing data. 

BHMC-S: Bayesian low-rank Hankel method [Yi et al. 2022]; AM-FIHT: deterministic low-rank 
Hankel method [Zhang et al 2019]; SDR-K: deterministic nonlinear streaming method [Hao 
et al. 2019] 

(a) (b) (c) 

(d) (e) (f) 

Figure 15: (a) ground truth, (b) the observed data, the estimated data by (c) the proposed 
method, (d) the BHMC-S method, (e) the AM-FIHT method. (f) the SDR-K method. 
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Numerical Experiments (Practical PMU Data) 

Table 1: The recovery performance of recorded PMU data on 6.7% M3 mode 

Method Proposed BHMC-S AM-FIHT SDR-K 
NEE 8.3 ×10−4 3.0 ×10−3 6.0 ×10−3 2.1 ×10−3 

Uncertainty index 

Table 2: The recovery error and the uncertainty index on 5% B1 with varying missing data 
percentage of M2 

Missing rate 5 15 25 35 45 
NEE 0.0019 0.0037 0.0057 0.0060 0.18 
Uindex 2.6×10−5 4.8×10−5 1.5×10−4 4.5×10−4 1.1×10−2 

Table 3: The recovery error and the uncertainty index on 5% M2 with varying bad data 
percentage of B1 

Bad rate 5 15 25 35 45 
NEE 0.0019 0.0091 0.016 0.017 0.032 
Uindex 2.6×10−5 5.8×10−5 7.0×10−5 8.3×10−4 6.2×10−3 
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Summary 

Snchrophasor data recovery with uncertainty modeling 
• Incorporate the Hankel structure to handle simultaneous and 
consecutive data loss/corruption 

• Provide an uncertainty index to evaluate the confdence of each 
estimation 

Nonlinear snchrophasor data recovery 
• Exploit the kernel method to recover data during nonlinear 
dynamics 

Ming Yi (CU & RPI) 29 / 30 



Future Work 

1 Synchrophasor data recovery: 
• Incorporate other system information to further improve the 
estimation performance 

• Extend the Hankel structure to more general Bayesian tensor 
recovery problems 
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Thank you! 
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