Real-Time Optimization and Control of Autonomous Energy Systems: From Theory to Practice

Andrey Bernstein
AES Industry Workshop
May 9, 2022
AES Control and Optimization Capabilities
AES Capabilities Summary

Algorithms and tools development for

optimization control estimation/prediction

with applications to highly distributed energy systems integration problems

This presentation may have proprietary information and is protected from public release
AES Capabilities

- Distributed optimization and control of millions of DERs
- Data-driven (ML/AI-based) optimization and optimal control
- Adaptive control for improving system real-time resilience
- Optimizing topology and microgrid formation
- Real-time state estimation and situational awareness

This presentation may have proprietary information and is protected from public release
AES Capabilities

Distributed optimization and control of millions of DERs
Distributed optimization with measurement feedback

- Obtain measurement of the system output y (e.g., voltages)
- Run a **simple/lightweight** optimization and repeat
- Application: **Real-Time Optimal Power Flow (RT-OPF)**
 - Avoids explicit modelling of power-flow equations and uncontrollable injections

\[x^{(k+1)} = \text{proj}_{x^{(k)}} \left\{ x^{(k)} - \alpha (J^{(k)})^T \nabla_y f^{(k)}(y^{(k)}) \right\} \]
Distributed Optimization and Control

Distributed optimization with measurement feedback

- Break large-scale problem into smaller parallel ones
- Solve small-scale subproblems locally
- Coordinate to arrive at system-wide solution

Tracking (Virtual Power Plant)
+ Cost minimization
+ Enforce limits

This presentation may have proprietary information and is protected from public release
Distributed Optimization and Control

• Developed under ARPA-E NODES and internal LDRD funds
• Implemented in:
 • Large-scale simulation with 10s of thousands of devices (SF Bay Area system)
 • HIL testbed at NREL with >100 physical devices and hundreds of simulated devices
 • Field demo at HCE (20 devices, 4 homes)
 • Field demo at Stone Edge Farm microgrid (~20 devices)
Hierarchical-distributed optimization

Motivation: Fast OPF solutions for large distribution networks w/o losing optimality

Methodology: Multi-level algorithms that exploit the network/OPF problem structure and improve the computational efficiency

Results and Impact:
- >10-time “free” speed improvement in a 11K distribution system
- Enabling 1-second/iteration online OPF solving for large networks
- Capability of handling solutions for million-node systems
Distributed Optimization and Control

Stochastic/robust optimization

- **Incorporate uncertainty in optimization**
- **Robust**: e.g., ensure voltage regulation no matter what the uncertainty is
- **Chance-constraints**: e.g., ensure voltage regulation with given probability (less conservative)

\[
\max_{\{\overline{p}_i, \overline{g}_i, \overline{q}_i, \overline{g}_i\}} \sum_{i=1}^{N} \alpha_i (\overline{p}_i - p_i) + \sum_{i=1}^{N} \beta_i (\overline{q}_i - q_i) \\
\text{s.t.: } u_i = (p_i, q_i), \ i = 1, \ldots, N \\
p_i \leq \overline{p}_i, \ i = 1, \ldots, N \\
q_i \leq \overline{q}_i, \ i = 1, \ldots, N \\
\Pr \{x_i = u_i + w_i \in \mathcal{X}_i, \ i = 1, \ldots, N\} \geq 1 - \delta \\
\Pr \{v = \mathbf{M}x + \mathbf{m} \in \mathcal{V}\} \geq 1 - \lambda.
\]
AES Capabilities

Data-driven (ML/AI-based) optimization and optimal control ("Learning to Optimize and Control")
Data-Driven (ML/AI-based) Optimization and Optimal Control

Model-Free RT-OPF

\[h(x) \]

- RT-OPF: requires system information (e.g., topology, line parameters)
- Use “probing” and measuring the output to optimize “on the fly” without explicit system model
- Slower convergence than standard RT-OPF

\[x^{(k+1)} = \text{proj}_{\mathcal{X}(k)} \left\{ x^{(k)} - \alpha \nabla F^{(k)} \right\} \]
Future building control requires **optimal control**
- E.g., to implement **grid-interactive buildings**
- Classic approach: model predictive control (MPC)
 - Requires buildings model
 - Need to be tailored for each building
- **Reinforcement learning** (RL) allows to **learn the optimal controller from data and interaction with the building**
- Demonstration in real commercial building in NYC
Data-Driven (ML/AI-based) Optimization and Optimal Control

Online data-enabled predictive control (ODDeePC)

- An alternative to RL
- Uses historical data directly in MPC
- Allows explicit constraints
- Online algorithms to **adapt to system changes**
- **Computationally efficient**
- Was evaluated on SDG&E feeder for voltage regulation with HIL+ADMS

\[
\begin{align*}
\text{minimize} & \quad \sum_{k=0}^{N-1} \left(\| y_k - r_{t+k} \|^2_Q + \| u_k \|^2_R \right) \\
\text{subject to} & \quad \begin{pmatrix} U_P \\ Y_P \\ U_f \\ Y_f \end{pmatrix} g = \begin{pmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \\ y \end{pmatrix}, \\
& \quad u_k \in U, \ \forall k \in \{0, \ldots, N-1\}, \\
& \quad y_k \in \mathcal{Y}, \ \forall k \in \{0, \ldots, N-1\}.
\end{align*}
\]
AES Capabilities

Adaptive control for improving system real-time resilience
MOTIVATION

- OPF problems are solved periodically (~ 15 min)
- Abrupt change in the network (line tripping) or in the load demand might occur between 2 OPF instances
- **Real-time emergency control** for avoiding network (voltage) collapse
Adaptive Control for Improving System Real-Time Resilience

CONTROL RATIONALE AND FEATURES

- Buses first try to fix their issue locally
- If the control effort is not enough, assistance is sought from neighboring buses on a communication network in a ripple-type manner
- The control is a model-free feedback based scheme

Loads experience a dangerous undervoltage. They respond using their flexibility.

Generator 1 asks for assistance from Generator 5, which start raising its voltage output until all loads have an acceptable voltage.

Generator 1 kicks in to raise the last load voltage, but even its effort is not enough.
AES Capabilities

Optimizing topology and microgrid formation
Optimizing Topology and Microgrid Formation

- Co-optimizing topology (switches) and DER setpoints
- During normal operation: minimize losses and cost of generation
- During faults: island the cells/areas to become microgrids
- Restoration: reconnect microgrids to form the grid

*Loads not shown

- Distributed Energy Resources
- Voltage/frequency master DER
- Sectionalizing Switches
- Cells
- Microgrids

This presentation may have proprietary information and is protected from public release
AES Capabilities

Real-time state estimation and situational awareness
Real-time state estimation and situational awareness

Low-observability state estimation

- Systems with less measurements than unknowns (states)
 - Distribution systems
 - Attacks/disruptions
- Form data in a 2D or 3D array – a matrix or tensor
- Due to correlations: matrix/tensor is low rank
- **State estimation = low-rank matrix/tensor completion**
Real-time state estimation and situational awareness

Low-observability state estimation

Dynamic state estimation
- Leverages previous estimates
- Measurements processed as they come in
- Simple update rules

\[M_t \text{ measurements at time } t \]
\[y(t) \]
\[x(t - 1) \]
\[x(t) \]
\[N \text{ states at time } t \]
\[M_t \leq N \]

Dynamic State Estimation (Least-Squares + Feedback)

delay

This presentation may have proprietary information and is protected from public release
Real-time state estimation and situational awareness

Topology identification

- Methods for **topology identification** using historical and real-time data
- Identification of **status of switches**
- **Bus clustering** according to substations
Examples of Demonstration and Partnerships
Demonstration and Partnerships

ARPA-E NODES: NREL, Caltech, Harvard, UM, SCE, HCE, Heila Technologies (Stone Edge Farm)

- Distributed DER control (RT-OPF)
- 100+ devices PHIL experiment, large-scale CHIL at SCE
- Field demonstration at HCE (4 homes, 20 devices)
- Field demonstration at Stone Edge Farm (~20 devices)
- Completed
Demonstration and Partnerships

SETO SolarExPert: UCF, NREL, HNEI, Duke, Siemens, OPAL-RT

• Distributed DER control
• Large-scale PHIL and CHIL experiments
• Simulation on >100k nodes system
• Completed
Demonstration and Partnerships

SETO GoSolar: NREL, HECO

- Distributed DER control + control of legacy devices
- PHIL with >100 inverters
- Simulation on >2k nodes system
- Completed
Demonstration and Partnerships

OE DynaGrid: NREL, LLNL, LANL, SNL, DTE Energy, ComEd

• Dynamic microgrid formation + distributed DER control
• Large-scale (Bay Area) simulation
• Field demo at LLNL site
• Potential field demo with DTE Energy
• Ongoing

This presentation may have proprietary information and is protected from public release
Demonstration and Partnerships

DOE Connected Communities: PGE, NEEA, CEP, NREL, OSI

- Accelerate development and deployment of flexible load resources
- Field demo with 580 community buildings
- Ongoing
Thank you