
Convex Q-Learning
NREL Workshop on Autonomous Energy Systems

Aug. 19–20, 2020

Sean Meyn

Based on ongoing research with Prashant Mehta @UIUC

Department of Electrical and Computer Engineering University of Florida

Inria International Chair Inria, Paris

Thanks to to many Gators at UF, and to our sponsors: NSF and ARO

http://ccc.centers.ufl.edu/

Convex Q-Learning
Outline

1 Advertising

2 What Is Q?

3 Convex Q-Learning

4 Conclusions

5 References

Advertising

Resources

Simons Institute Programs

2018 tutorial on RL
https://www.youtube.com/watch?v=dhEF5pfYmvc

Theory of Reinforcement Learning, Aug. 19–Dec. 18, 2020
https://simons.berkeley.edu/programs/rl20

Markov Chains
and

Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

This talk:
[4] P. G. Mehta and S. P. Meyn. Convex Q-learning. ArXiv e-prints:2008.03559, 2020.

Background:
[3] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. CDC, 2009.
[5] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn. Optimal rate
of convergence for quasi-stochastic approximation. arXiv:1903.07228, 2019.
[6] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. G. Mehta, and S. Meyn. Quasi-
stochastic approximation and off-policy reinforcement learning. CDC, 2019.

[7] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement learning
algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020.

1 / 19

https://www.youtube.com/watch?v=dhEF5pfYmvc
https://simons.berkeley.edu/programs/rl20
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html
https://arxiv.org/abs/2008.03559

Advertising

Reinforcement Learning & Control

Theory of Reinforcement Learning
August 19 – December 18, 2020

Tutorials and surveys available in real time

2 / 19

https://simons.berkeley.edu/programs/rl20/

Q Crash Course

What Is Q? Propaganda

Reinforcement Learning

Reinforcement learning (RL) is an area of
machine learning concerned with how software
agents ought to take actions in an environment
so as to maximize some notion of cumulative
reward –Wikipedia

Examples relevant to me and NREL

Optimizing windfarms

Smart Grids

Smart Buildings

3 / 19

What Is Q? Propaganda

Reinforcement Learning

Reinforcement learning (RL) is an area of
machine learning concerned with how software
agents ought to take actions in an environment
so as to maximize some notion of cumulative
reward –Wikipedia

Examples relevant to me and NREL

Optimizing windfarms

Smart Grids

Smart Buildings

RL is an emerging science, evolving alongside decision and control theory:
“...as RL algorithms are increasingly and more aggressively deployed in safety
critical settings, control theorists must be part of the conversation” [22]

3 / 19

What Is Q? Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

State: Xk denotes position and velocity (why?)
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

DP eqn: J?(X0) = min
U0

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)

4 / 19

What Is Q? Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

DP eqn: J?(X0) = min
U0

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)

4 / 19

What Is Q? Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)}
Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)

4 / 19

What Is Q? Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)

4 / 19

What Is Q? Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)
4 / 19

What Is Q? Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation

Re
tu

rn
 a

ir

Exhaust
air

Chilled
water

Hot
water

Co
ol

in
g a

nd
de

hu
m

id
ify

in
g c

oi
l

Re
he

at
in

g c
oi

l

Disturbance d

T z W z

ṁSA

Zone

Fan
TSA

WSA
TCA

WCA
TMA

WMA
TOA

WOA

Outdoor
air

Mixed
air

Conditioned
air

Supply
air

ṁOA
ṁ

R
A

Five dimensional state space and four dimensional input space

Joint work with N. S. Raman, P. Barooah @ UF MAE, A. Devraj @ Stanford

See final page of references, and bibliography of [17]

5 / 19

What Is Q? Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation

Input: Uk := [msa(k), roa(k), Tca(k), Tsa(k)]T

1 Supply air flow rate (msa)

2 Outdoor air ratio (roa)

3 Conditioned air temperature (Tca)

4 Supply air temperature (Tsa)

State: Xk := [Tz(k),Wz(k), Toa(k),Woa(k), U(k − 1)]T

1 Zone air temperature (Tz)

2 Zone air humidity ratio (Wz)

3 Outdoor air temperature (Toa)

4 Outdoor air humidity ratio (Woa)

5 Control inputs from the previous time step

6 ... forecast of occupancy, weather, ...

Quadratic basis: + Zap Q-learning

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

=
∑
i

θiψi(x, u)

Initial results are great ...

Return air

Ex
ha

us
t

ai
r

 Ch
ill

ed
w

at
er

H
ot

w
at

er

Cooling and
dehumidifying coil

Reheating coil

Di
stu

rb
an

ce
 d

T
z

W
z

ṁ
S
AZo

ne

Fa
n

T
S
A

W
S
A

T
C
A

W
C
A

T
M

A

W
M

A
T

O
A

W
O
A

Ou
td

oo
r

ai
r

M
ixe

d
ai

r
Co

nd
iti

on
ed

ai
r

Su
pp

ly
ai

r

ṁ
O
A

ṁ
RA

6 / 19

What Is Q? Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation

Input: Uk := [msa(k), roa(k), Tca(k), Tsa(k)]T

State:
Xk := [Tz(k),Wz(k), Toa(k),Woa(k), U(k − 1)]T

Quadratic basis: + Zap Q-learning

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

=
∑
i

θiψi(x, u)

Initial results are great ...

Return air

Ex
ha

us
t

ai
r

 Ch
ill

ed
w

at
er

H
ot

w
at

er

Cooling and
dehumidifying coil

Reheating coil

Di
stu

rb
an

ce
 d

T
z

W
z

ṁ
S
AZo

ne

Fa
n

T
S
A

W
S
A

T
C
A

W
C
A

T
M

A

W
M

A
T

O
A

W
O
A

Ou
td

oo
r

ai
r

M
ixe

d
ai

r
Co

nd
iti

on
ed

ai
r

Su
pp

ly
ai

r

ṁ
O
A

ṁ
RA

6 / 19

What Is Q? Example: heating and ventilation in a Florida office building

Close Loop Response: Temperature and humidity evolution

60

70

80

0

5

10

10
-3

Limits

24 Hours 24 Hours

Zone air temperature Zone air humidity ratio

1e3

1e5Tr
ai
ni
ng

Pe
rio

d

Goal: Maintain temperature / humidity, and minimize energy consumption

Inputs: Air-flow rate, out-door air ratio, conditioned air temperature, supply
air temperature

Approach: Find θ∗ with quadratic basis:

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

7 / 19

What Is Q? How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

8 / 19

What Is Q? How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u))

= c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

8 / 19

What Is Q? How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

8 / 19

What Is Q? How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

For example, θi is a “weight” in a neural network, or

Qθ(x, u) =
∑
i

θiψi(x, u)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

8 / 19

What Is Q? How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

8 / 19

What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [25, 7, 1]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal: Find roots of

f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑
k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk)

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

9 / 19

What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [25, 7, 1]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal: Find roots of

f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑
k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk) Q(0)-learning

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

9 / 19

What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [25, 7, 1]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal: Find roots of

f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑
k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk)

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

9 / 19

What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [25, 7, 1]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal: Find roots of f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑
k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk)

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

9 / 19

What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [18, 19, 20, 21]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}
En(θ) =

1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2
With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]

10 / 19

What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [18, 19, 20, 21]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}
En(θ) =

1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2

With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]

10 / 19

What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [18, 19, 20, 21]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}
En(θ) =

1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2
With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]

10 / 19

What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [18, 19, 20, 21]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}
En(θ) =

1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2
With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]

10 / 19

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Be
llm

an
 E

rr
or

n

6-State Path Finding Problem: One Million Iterations

Convex Q-Learning

Convex Q-Learning Every DP is a QP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960]

Proposition: [Subject to mild assumptions]

J? solves the following LP:

max
J
〈µ, J〉

s.t. J(x) ≤ c(x, u) + J(F(x, u)) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

Applications to ADP in the thesis of de Farias (with BVR) [8, 9]

One way to derive the SDP representation of LQR [Boyd et al]

Applications in deterministic control every day

11 / 19

Convex Q-Learning Every DP is a QP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960]

Proposition: [Subject to mild assumptions]

The pair (J?, Q?) solve the following LP:

max
J,Q

〈µ, J〉

s.t. Q(x, u) ≤ c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

11 / 19

Convex Q-Learning Every DP is a QP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960]

Proposition: [Subject to mild assumptions]

The pair (J?, Q?) solve the following LP:

max
J,Q

〈µ, J〉

s.t. Q(x, u) ≤ c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

Over-parameterization for RL more recent.

Motivation: Q(Xk, Uk) ≤ c(Xk, Uk) + J(Xk+1) (observed)

11 / 19

Convex Q-Learning Every DP is a QP

Every DP is a QP

Proposition: [Subject to mild assumptions]

The pair (J?, Q?) solve the following QP:

min
J,Q

− 〈µ, J〉+ κ〈ν, E2〉

s.t. 0 ≤ E(x, u) :=−Q(x, u) + c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

ν a probability measure on X× U

The objective and constraints can be observed, without a model
=⇒ Long list of possible RL approximations

12 / 19

Convex Q-Learning Every DP is a QP

Every DP is a QP

Proposition: [Subject to mild assumptions]

The pair (J?, Q?) solve the following QP:

min
J,Q

− 〈µ, J〉+ κ〈ν, E2〉

s.t. 0 ≤ E(x, u) :=−Q(x, u) + c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

ν a probability measure on X× U

The objective and constraints can be observed, without a model
=⇒ Long list of possible RL approximations

12 / 19

Convex Q-Learning Every DP is a QP

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E(θ)2〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

=⇒ zn(θ) ≥ 0

Qθ(x, u) ≥ Jθ(x) ⇐= Enforce through function architecture

zn(θ) =
1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]
ζ+
k

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

13 / 19

Convex Q-Learning Every DP is a QP

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E(θ)2〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1) =⇒ zn(θ) ≥ 0

zn(θ) =
1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]
ζ+
k

ζ+
k : vector with non-negative entries

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

13 / 19

Convex Q-Learning Every DP is a QP

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E(θ)2〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1) =⇒ zn(θ) ≥ 0

zn(θ) =
1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]
ζ+
k

Ē2
n(θ) =

1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]2

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

13 / 19

Convex Q-Learning Every DP is a QP

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E(θ)2〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1) =⇒ zn(θ) ≥ 0

zn(θ) =
1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + J

θ
(Xk+1)

]
ζ
+
k

Ē2n(θ) =
1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + J

θ
(Xk+1)

]2

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

13 / 19

Conclusions

Conclusions

0
-1.2 -0.07

20

-0.86 -0.042

40

-0.52 -0.014

60

-0.18 0.014

80

0.16 0.042
0.07

-0.070
-1.2 -0.042

20

-0.86 -0.014-0.52

40

0.014-0.18

60

0.0420.16
0.070.5

80

Value function obtained from VIA Value function approximation from convex Q

The LP and QP characterization of DP equations gives rise to RL
algorithms that provably convergent, and for which we know what problem
we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient algorithms are expected soon!

Thank you!

14 / 19

Conclusions

Conclusions 0
-1.2 -0.07

20

-0.86 -0.042

40

-0.52 -0.014

60

-0.18 0.014

80

0.16 0.042
0.07

-0.070
-1.2 -0.042

20

-0.86 -0.014-0.52

40

0.014-0.18

60

0.0420.16
0.070.5

80

Value function obtained from VIA Value function approximation from convex Q

The LP and QP characterization of DP equations gives rise to RL
algorithms that provably convergent, and for which we know what problem
we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient algorithms are expected soon!

Thank you!

14 / 19

Conclusions

Conclusions 0
-1.2 -0.07

20

-0.86 -0.042

40

-0.52 -0.014

60

-0.18 0.014

80

0.16 0.042
0.07

-0.070
-1.2 -0.042

20

-0.86 -0.014-0.52

40

0.014-0.18

60

0.0420.16
0.070.5

80

Value function obtained from VIA Value function approximation from convex Q

The LP and QP characterization of DP equations gives rise to RL
algorithms that provably convergent, and for which we know what problem
we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient algorithms are expected soon!

Thank you!

14 / 19

Conclusions

Conclusions 0
-1.2 -0.07

20

-0.86 -0.042

40

-0.52 -0.014

60

-0.18 0.014

80

0.16 0.042
0.07

-0.070
-1.2 -0.042

20

-0.86 -0.014-0.52

40

0.014-0.18

60

0.0420.16
0.070.5

80

Value function obtained from VIA Value function approximation from convex Q

The LP and QP characterization of DP equations gives rise to RL
algorithms that provably convergent, and for which we know what problem
we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient algorithms are expected soon!

Thank you!

14 / 19

References

Markov Chains
and

Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

References

15 / 19

References

Selected References I

[1] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press. On-line
edition at http://www.cs.ualberta.ca/~sutton/book/the-book.html, Cambridge,
MA, 2nd edition, 2018.

[2] S. P. Meyn. Feedback systems and reinforcement learning. In preparation, 2020.

[3] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. In Proc. of
the IEEE Conf. on Dec. and Control, pages 3598–3605, Dec. 2009.

[4] P. G. Mehta and S. P. Meyn. Convex Q-learning, part 1: Deterministic optimal control.
ArXiv e-prints:2008.03559, 2020.

[5] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn. Optimal
rate of convergence for quasi-stochastic approximation. arXiv:1903.07228, 2019.

[6] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. G. Mehta, and S. Meyn.
Quasi-stochastic approximation and off-policy reinforcement learning. In Proc. of the
IEEE Conf. on Dec. and Control, pages 5244–5251, Mar 2019.

[7] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement
learning algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020.

[8] D. P. de Farias and B. Van Roy. The linear programming approach to approximate
dynamic programming. Operations Res., 51(6):850–865, 2003.

16 / 19

http://www.cs.ualberta.ca/~sutton/book/the-book.html

References

Selected References II

[9] D. P. de Farias and B. Van Roy. A cost-shaping linear program for average-cost
approximate dynamic programming with performance guarantees. Math. Oper. Res.,
31(3):597–620, 2006.

[10] A. M. Devraj. Reinforcement Learning Design with Optimal Learning Rate. PhD thesis,
University of Florida, 2019.

[11] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for
neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control. Wiley, 2011.

[12] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement
learning algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020.

[13] S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Explicit Mean-Square Error Bounds for
Monte-Carlo and Linear Stochastic Approximation. arXiv e-prints, 2002.02584, Feb. 2020.

[14] A. M. Devraj and S. P. Meyn. Q-learning with Uniformly Bounded Variance: Large
Discounting is Not a Barrier to Fast Learning. arXiv e-prints 2002.10301, and to appear
AISTATS, Feb. 2020.

[15] A. M. Devraj, A. Bušić and S. P. Meyn. Zap Meets Momentum: Stochastic
Approximation Algorithms with Optimal Convergence Rate. ArXiv , September 2018.

17 / 19

https://arxiv.org/abs/1809.06277
https://arxiv.org/abs/1809.06277

References

Selected References III

[16] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. In IEEE
Conference on Decision and Control, 3598–3605, Dec. 2009.

[17] N. S. Raman, A. M. Devraj, P. Barooah, and S. P. Meyn. Reinforcement learning for
control of building HVAC systems. In American Control Conference, July 2020.

[18] M. Riedmiller. Neural fitted Q iteration – first experiences with a data efficient neural
reinforcement learning method. In J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and
L. Torgo, editors, Machine Learning: ECML 2005, pages 317–328, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[19] S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer, 2012.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. Playing Atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.

18 / 19

References

Selected References IV

[22] N. Matni, A. Proutiere, A. Rantzer, and S. Tu. From self-tuning regulators to
reinforcement learning and back again. In Proc. of the IEEE Conf. on Dec. and Control,
pages 3724–3740, 2019.

[23] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[24] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press, Delhi, India & Cambridge, UK, 2008.

[25] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[26] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674–690, 1997.

[27] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Published in the Cambridge
Mathematical Library.

[28] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
See last chapter on simulation and average-cost TD learning

19 / 19

	Title Slide
	Convex Q-Learning Outline
	Resources
	Reinforcement Learning & Control
	Q Crash Course
	Reinforcement Learning 1
	Reinforcement Learning 2
	Dynamic Programming and RL 1
	Dynamic Programming and RL 2
	Dynamic Programming and RL 3
	Dynamic Programming and RL 4
	Dynamic Programming and RL 5
	Control Design for Heating and Ventilation 1
	Control Design for Heating and Ventilation 2
	Control Design for Heating and Ventilation 3
	Close Loop Resonse: Temperature and Humidity Evolution
	From DP to Q-Learning 1
	From DP to Q-Learning 2
	From DP to Q-Learning 3
	From DP to Q-Learning 4
	From DP to Q-Learning 5
	Q(0) Learning and Deep Q-Learning 1
	Q(0) Learning and Deep Q-Learning 2
	Q(0) Learning and Deep Q-Learning 3
	Q(0) Learning and Deep Q-Learning 4
	Q(0) Learning and Deep Q-Learning 5
	Q(0) Learning and Deep Q-Learning 6
	Q(0) Learning and Deep Q-Learning 7
	Q(0) Learning and Deep Q-Learning 8
	Bellman Error
	Every DP is an LP 1
	Every DP is an LP 2
	Every DP is an LP 3
	Every DP is a QP 1
	Every DP is a QP 2
	Every DP is a QP --> Convex Q Learning 1
	Every DP is a QP --> Convex Q Learning 2
	Every DP is a QP --> Convex Q Learning 3
	Every DP is a QP --> Convex Q Learning 4
	Conclusions 1
	Conclusions 2
	Conclusions 3
	Conclusions 4
	References
	Selected References 1
	Selected References 2
	Selected References 3
	Selected References 4

