Autonomous Energy System Simulation Capabilities – Ultra-Large Scale DER Deployment

Deepthi Vaidhynathan and Jennifer King
Autonomous Energy Systems Workshop 2020
August 20, 2020
Workshop on Autonomous Energy Systems

August 20, 2020

- Attendees will be muted throughout the duration of the workshop
- If you have a question, please type it into the chat box. This chat box will be monitored throughout the meeting.
Workshop on Autonomous Energy Systems
August 20, 2020

Agenda

Introduction
8:30 – 9:00: Autonomous Energy System Simulation Capabilities – Ultra-Large Scale DER Deployment -
Jen King and Deepthi Vaidhynathan, NREL

Session 3: Grid-Interactive and Efficient Buildings
Moderator(s): Kalpesh Chaudhari, Matt Moniot

9:00 – 9:45: Learning-boosted Optimal Power Flow - *Kyri Baker, University of Colorado – Boulder*

9:45 – 10:30: Capacity characterization of on/off and variable flexible loads providing virtual energy storage - *Prabir Barooah, University of Florida*

11:15 – 12:00: Scalable Distributed Model Predictive Control for Building and Renewable Energy Systems - *Rohit Chintala and Christopher Bay, NREL*

12:00-13:00 Break
Workshop on Autonomous Energy Systems
August 20, 2020

Agenda

Session 4: Transportation and Mobility
Moderator(s): Rohit Chintala, Christopher Bay

13:00 – 13:45: Online optimization as feedback control for dynamical systems - **Emiliano Dall’Anese, University of Colorado - Boulder**

13:45 – 14:30: Transactive Control in Transportation Systems - **Anuradha Annaswamy, MIT**

14:30 – 15:15: Adaptive Charging Network Research Portal - **Steven Low, CalTech**

15:15 – 16:00: Modeling and Management of Electric Vehicle Loads - **Matt Moniot and Kalpesh Chaudhari, NREL**

16:00 – 16:15: Workshop Wrap up - **Ben Kroposki, NREL**
AES Computational Framework

Lead Developer: Deepthi Vaidhynathan
Monte Lunacek, Slava Barsuk, Wesley Jones and Abinet Eseye

Visualization

Developers: Kenny Gruchalla, Nicholas Brunhart-Lupo

Integrated Buildings Models

Developers: Rohit Chintala, Chris Bay

Electric Vehicles – HIVE

Developer: Matt Moniot

Data Integration

Developers: Jordan Perr-Sauer, Dylan Wald
Overview

• Developing **distributed, scalable optimization and control algorithms** that can operate millions of controllable devices in 1s

• **Complex simulation framework** that integrates buildings, wind/solar, vehicles, grid
 • Runs with HELICS and Co-sim
 • Parallelized to run on Eagle for large simulations
Overview

• Developing **distributed, scalable optimization and control algorithms** that can operate millions of controllable devices in 1s

• **Complex simulation framework** that integrates buildings, wind/solar, vehicles, grid
 • Runs with HELICS and Co-sim
 • Parallelized to run on Eagle for large simulations
• San Francisco Bay Area Use Case

• Models used in computational framework
 • Vehicles
 • Buildings
 • Solar
 • Optional: wind

• Computational Framework
 • Communication and HPC capabilities
 • Controller Integration

• Results with Region 1

• Future work
San Francisco Bay Area

15 regions in the Bay Area

Region 1
San Francisco Bay Area - Region 1
Region 1 – Charging Stations with HIVE
Region 1 – Charging Stations

*Currently: uncontrollable load

In progress: integrating charging control

*Details on HIVE and charging control to be provided in presentation at 3:15am
Region 1 – Building Models

• Model the thermodynamics of a small office building
• Internal load + integrated with weather data
• Scaled buildings for each of the nodes

• Details to be provided in presentation at 11:15am
Input Weather Data

• Corresponding solar/cloud data across a region
• Limitations: 5 minute data that is scaled down to 1s data
Computational Framework
Autonomous Energy Systems

Scalable, reconfigurable, and self-organizing information and control platform.
Autonomous Energy Systems
Building Blocks

• **Communication**: Drives the controllers and models. Enables communication between multiple agents and hierarchies.

• **Controller**: Supervisory controller to manage the device model to enforce system level constraints.

• **Model**: Represents the physics of the device being modeled. Examples of Distributed Energy Resources (DER) models include PV, Batteries, Wind, EVSE etc.
Models

• Data driven models that mimic the physics of the device being modeled:
 – Batteries
 – EVSE
 – Buildings
 – Wind
 – Solar
Controllers

• The Control algorithms that are proposed to integrate high penetrations of DERs on the grid.

• Examples include:
 – Distributed volt-var control
 – Realtime feedback-based optimization control - Virtual power plant control
 – Market based controls.
• Setup the communication hierarchy of the AES system.
• This includes communication pathways for different control architectures including hierarchical control.
Advanced Computational Energy Systems (ACES) CoSim

- **Co-simulation (ACES Cosim SWR-19-05)**
 - Multiple systems simulated together
 - Distributed
 - Degree of communication
 - Time coordination

OpenDSS+ controllers (HEMS, Pyomo, heuristic)
• Scalable HPC enabled co-simulation environment powered by CoSim and HELICS.

• CoSim is an agent-based modeling framework that excels at intra-node simulations while HELICS is a highly scalable hierarchical co-simulation engine that works well for inter-node communication.

• We require an intelligent way to distribute the components of the simulation across multiple nodes to enable better algorithm scaling as well as maximizing HPC performance metrics by taking advantage of HELICS and CoSim.
The AES computational framework provides a software testbed to rapidly develop, prototype and test emerging control algorithms and control hierarchies for DER integration.

- **Communication:**
 - Communication Agent
 - Communication Agent
 - Communication Agent
 - Reconfigurable communication layer that can model different control hierarchies.

- **Controller:**
 - User defined controller 1
 - User defined controller 2
 - User defined controller N
 - The user defined control algorithms are plugged in to this layer. They are automatically launched and parallelized by the backend.

- **Model:**
 - The framework has data driven models for various DERs for multiple scenarios.
Simulations

A synthetic distribution feeder in region P1U of San Francisco, CA.

Simulating the impacts of integration distributed energy resources (DERs) on a single electric distribution feeder.

Synthetic feeders were obtained from the SMART-DS project.

Synthetic distribution network for region P1U of San Francisco, CA.

Simulating the impacts of integration distributed energy resources (DERs) on a network of electric distribution feeders.
Feeder Level control

The blue color represents PV available, The orange color represents the controlled PV.

VPP controller from ARPA-E-NODES

Solar irradiance for the simulation window
Scalable software framework and control methods to address challenges in future energy systems

37-Node feeder

10s of DERs
10 AUs

123-Node feeder

100s of DERs
72 AUs

IEEE 8500-Node Feeder

>1000 DERs
10000 AUs

Bayarea electric network

~ Millions of DERs
100000 AUs

Distributed Energy Resources (DERs)
including Solar, Batteries, Wind, Controllable loads,
Electric Vehicles etc.

Scaling to meet demands of future energy systems requires scalable control methods and communication architecture.
Future Work – Autonomous Urbanization

- **Immediate**: Uncontrollable loads -> Controllable loads
 - Building level control (presentation at 11:15am)
 - Charging station control (presentation at 3:15pm)

- **Up next**: Interactions of mobility and buildings

- Develop and demonstrate integrated **forecast, control, and intelligent infrastructure** capabilities of these edge devices on a large-scale simulation platform.

- Ability to demonstrate these capabilities on millions of devices using a **combination of simulation and HIL** at NREL’s ARIES (Advanced Research on Integrated Energy Systems)

Thank you