Optimal Capacity Design and Operation of Energy Hub Systems

Ian A. Hiskens

Vennema Professor of Engineering
Professor, Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

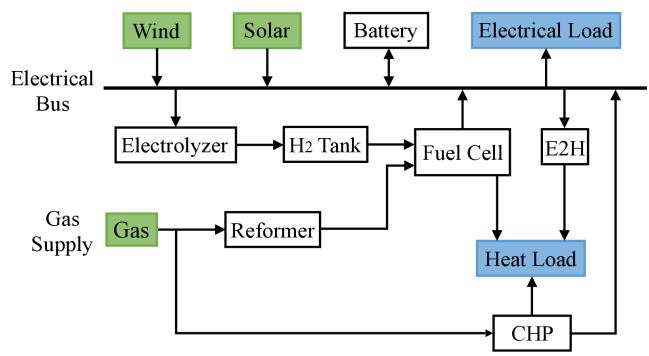
Based on:

S. Geng, M. Vrakopoulou and I. Hiskens, "Optimal capacity design and operation of energy hub systems", early access *Proceedings of the IEEE*.

Workshop on Autonomous Energy Systems NREL, Golden CO August 19, 2020

Energy hubs

- No electricity grid connection.
- Gas supply (possibly from local storage tank).
- Renewable sources (wind, solar PV).
- Battery and hydrogen storage.
- Electrical and heat load.



Objective

- Determine the minimum cost energy-hub capacity design while ensuring electrical and heat loads are satisfied with high probability.
 - Taking into account uncertainty in renewable generation (wind and solar) and loads, and flexibility in storage.
 - $\begin{array}{ll} & \text{Wind generation: } \tilde{\mathbf{p}}_{w} = \overline{p}_{w} \cdot \tilde{\mathbf{p}}_{w}^{0} \\ & \text{where } \tilde{\mathbf{p}}_{w}^{0} \text{ is a normalized random scenario,} \\ & \overline{p}_{w} \text{ is the wind turbine capacity.} \end{array}$
 - Similarly for solar PV.
 - Load $\tilde{\mathbf{p}}_d$ is not normalized.
- Capacity design can be formulated as a chance-constrained problem:

$$\min_{x \in \mathcal{X} \subseteq \mathbb{R}^{n_x}} J(x)$$
subject to $\Pr\left(\max_{j=1,...,m} g_j(x,\delta) \le 0 \middle| \delta \in \Delta\right) \ge 1 - \epsilon$

Solar PV

Wind Turbine

- $-\delta \in \Delta \subseteq \mathbb{R}^{n_\delta}$ are the random variables: renewable generation and load.
- $-x \in \mathcal{X} \subseteq \mathbb{R}^{n_x}$ are the decision variables: component capacities.
- ϵ is a pre-defined maximal probability of violation.

Chance-constrained optimization

- Uncertainty in generation and load results in stochastic constraints:
 - Power balance/sufficiency.
 - Battery charging/discharging (through a control policy that is dependent upon the stochastic variables).

- There are also a variety of deterministic constraints and nonnegativity constraints.
- The objective function is composed of the net present cost of all the devices that form the energy hub.

- This is a difficult problem to solve due to non-convexity.
 - Integer variables describe battery charging/discharging complementarity.

Robust reformulation

- The chance-constrained problem can be solved through a robust reformulation.
- This reformulation is based on a new chance-constrained problem:

$$\min ||\overline{\xi} - \underline{\xi}||_1$$

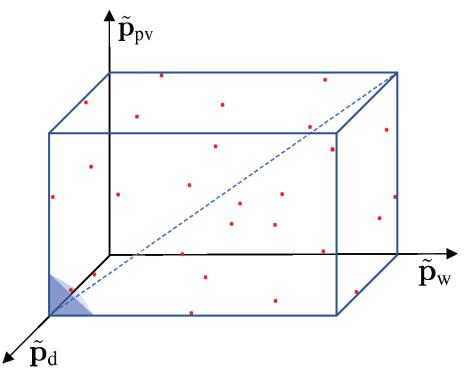
subject to $\Pr \left(\delta \in [\underline{\xi}, \overline{\xi}] \middle| \delta \in \Delta \subseteq \mathbb{R}^{3T} \right) \ge 1 - \epsilon$

which is used to construct a hyper-rectangular robust set $B^* = [\underline{\xi}^*, \overline{\xi}^*]$ for the random vector.

- This new problem is solved using a scenario approach.
- A robust counterpart of the original chance-constrained problem confines the random vector to $B^*\subset \Delta$.
- This can, however, give quite conservative results.

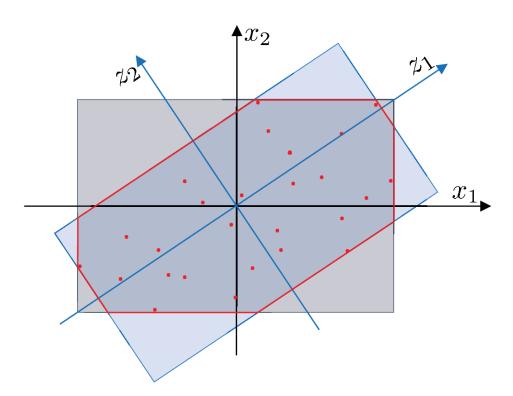
Robust set reshaping: cutting

- The process of constructing the hyper-rectangle can capture highly unlikely possibilities.
 - Example: low renewable generation plus high load all day.
- Introduce hyperplanes to trim the unrealistic corners of the hyper-rectangle.



Robust set reshaping: PCA

- Principal component analysis provides a coordinate transformation.
- Introduce two hyperplanes for each principal component.
- The intersection of the original and new hyper-rectangles gives a much smaller (polytopic) robust set.
- All the data points are still enclosed.
- Less conservative.



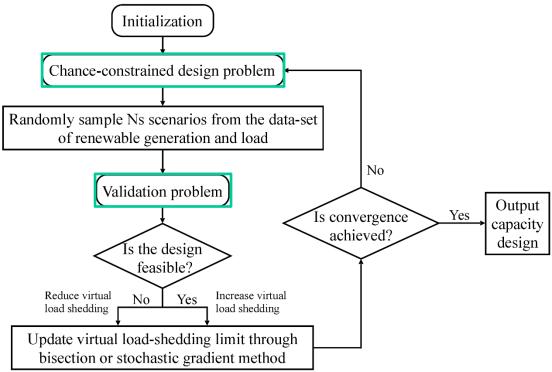
Tractable linear program

- Battery dispatch is governed by an affine control policy.
- This enables the charge/discharge complementarity condition to be reformulated.
- The result is a robust linear program (LP) with polytopic uncertainty set.
- It can be converted to a regular LP by taking the dual.
 - Computationally tractable problem.

The solution may, however, still be quite conservative.

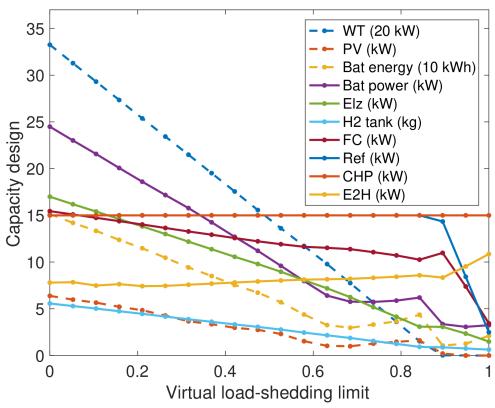
Iterative design method

- An iterative method is used to address conservativeness of the chance-constrained problem.
- The (scalar) maximum load shedding parameter $\hat{r}_{
 m sh}^{
 m e}$ is used to bridge between the chance-constrained and validation sub-problems.
- Bisection and stochastic gradient algorithms have been implemented.



Parameterization of the CC problem

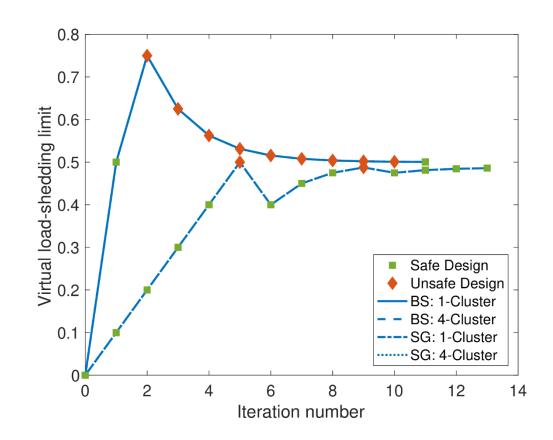
- Load shedding $\hat{r}_{
 m sh}^{
 m e}$ parameterizes the chance-constrained problem.
 - Decreasing $\hat{r}_{\rm sh}^{\rm e}$ tightens the problem, increases design conservativeness.
 - Increasing $\hat{r}_{\rm sh}^{\rm e}$ relaxes the problem, decreases design conservativeness.



Convergence

Optimal Design

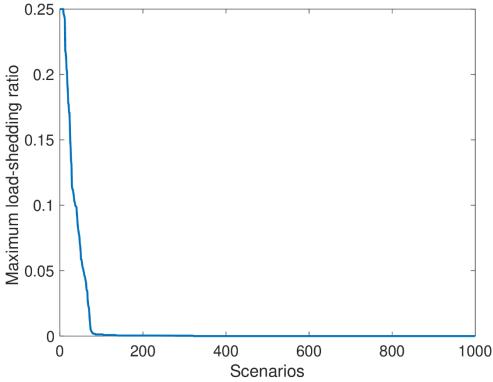
•	
$\overline{p}_{ m w}({ m kW})$	291.31
$\overline{p}_{\mathrm{pv}}(\mathrm{kW})$	2.56
$ \; \overline{p}_{ m b}({ m kW}) $	10.42
$\overline{e}_{\mathrm{b}} \; (\mathrm{kWh})$	62.47
$\overline{p}_{ m elz}({ m kW})$	9.38
$\overline{m}_{\mathrm{h}_2}(\mathrm{kg})$	2.92
$\overline{p}_{ m fc}({ m kW})$	12.06
$\overline{p}_{ m rfm}({ m kW})$	15.00
$\overline{p}_{ m chp}({ m kW})$	15.00
$\overline{p}_{ m e2h}({ m kW})$	7.98
$\hat{r}_{ m sh}^{ m e}({ m kW})$	0.5005
Cost (Million)	\$1.39



Design peak load is 100kW

Actual load shedding outcome

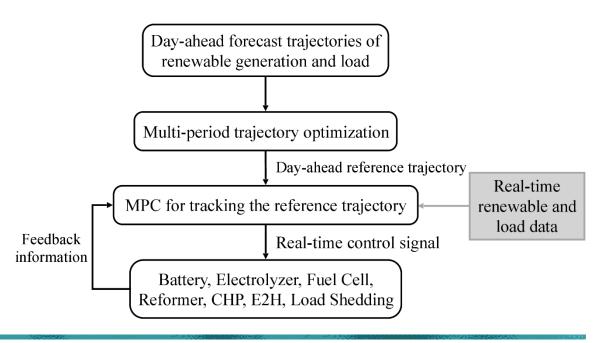
- The validation phase ensures feasibility of 100 of the 1000 scenarios.
 - Ensures the true load shedding limit (25% for our example) is not exceeded.
- A posteriori evaluation of all 1000 scenarios indicated that 7 failed to satisfy the load-shedding limit.
 - This corresponds to an upper bound on the violation probability of $\epsilon=2$ %.



Energy hub operation

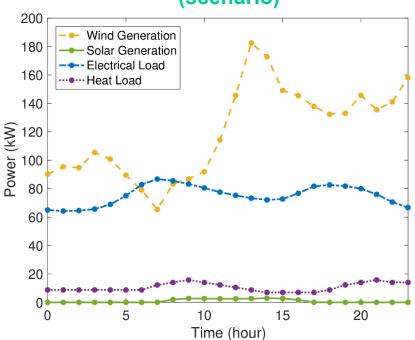
- A two-level operating scheme has been adopted.
 - Upper level: day-ahead optimal scheduling.
 - Lower level: real-time model predictive control (MPC).
- Real-time realizations of renewable generation and load differ from their day-ahead forecast.
 - MPC seeks to track the reference trajectories for battery state of charge and hydrogen storage provided by the day-ahead schedule, while minimizing load shedding.

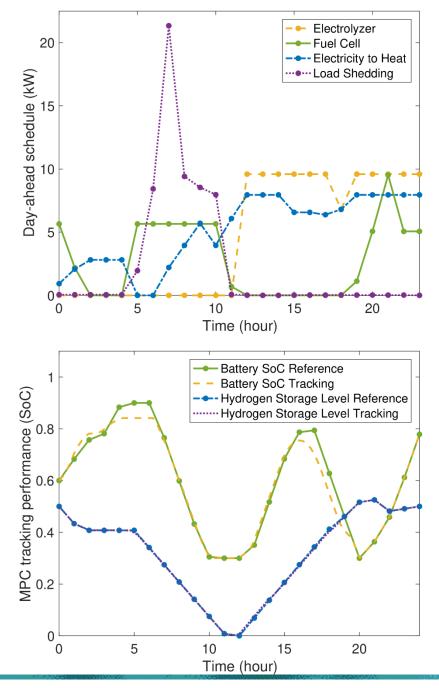
This two-level operating strategy has been extended to networked energy hubs.



Example

Renewable generation and load (scenario)





Conclusions

- Energy hubs incorporate multiple energy carriers.
 - Example: electricity, gas, heat, hydrogen.
 - They form the building blocks for community-based energy grids.
- Capacity design of autonomous energy hubs must take into account the stochasticity of renewable generation and load.
 - This results in a chance-constrained optimization problem.
- An affine policy for battery dispatch allows a robust reformulation of the chance-constrained problem to be expressed as a tractable linear program.
 - This may give quite conservative results.
- Conservativeness can be addressed through iteration between the robust problem and a validation problem.
- Economic operation of an autonomous energy hub can be achieved using a two-level control structure.
- This two-level operating strategy extends to networks of energy hubs.

