Control of Power Converters in Low-Inertia Power Systems

Florian Dörfler

ETH Zürich

NREL AES Workshop
Acknowledgements

Marcello Colombino
Ali Tayyebi-Khameneh
Dominic Groß
Irina Subotic

Further: A. Anta, J.S. Brouillon, G.S. Seo, B. Johnson, M. Sinha, & S. Dhople
Replacing the power system foundation

fuel
- not sustainable

renewables
+ sustainable
Replacing the power system foundation

fuel
- not sustainable
+ central & dispatchable generation

renewables
+ sustainable
- distributed & variable generation
Replacing the power system foundation

fuel & synchronous machines
- not sustainable
+ central & dispatchable generation

renewables & power electronics
+ sustainable
- distributed & variable generation
Replacing the power system foundation

fuel & synchronous machines
- not sustainable
+ central & dispatchable generation
+ large rotational inertia as buffer

renewables & power electronics
+ sustainable
- distributed & variable generation
- almost no energy storage
Replacing the power system foundation

fuel & synchronous machines
- not sustainable
- central & dispatchable generation
- large rotational inertia as buffer
- self-synchronize through the grid

renewables & power electronics
+ sustainable
- distributed & variable generation
- almost no energy storage
- no inherent self-synchronization
Replacing the power system foundation

fuel & synchronous machines
- not sustainable
- central & dispatchable generation
- large rotational inertia as buffer
- self-synchronize through the grid
- resilient voltage / frequency control

renewables & power electronics
+ sustainable
- distributed & variable generation
- almost no energy storage
- no inherent self-synchronization
- fragile voltage / frequency control
Replacing the power system foundation

fuel & synchronous machines
- not sustainable
- **central & dispatchable** generation
- **large** rotational **inertia** as buffer
- **self-synchronize** through the **grid**
- **resilient** voltage / frequency **control**
- slow actuation & **control**

renewables & power electronics
+ sustainable
- **distributed & variable** generation
- almost **no energy storage**
- no inherent **self-synchronization**
- **fragile** voltage / frequency **control**
+ fast / flexible / modular control
The concerns are not hypothetical

lack of robust control:

“Nine of the 13 wind farms online did not ride through the six voltage disturbances experienced during the event.”
The concerns are not hypothetical

lack of robust control:

“Nine of the 13 wind farms online did not ride through the six voltage disturbances experienced during the event.”

between the lines:

conventional system would have been more resilient (?)
The concerns are not hypothetical issues broadly recognized by TSOs, device manufacturers, academia, agencies, etc.

UPDATE REPORT

BLACK SYSTEM EVENT
IN SOUTH AUSTRALIA ON
28 SEPTEMBER 2016

AN UPDATE TO THE PRELIMINARY OPERATING INCIDENT REPORT FOR THE NATIONAL ELECTRICITY MARKET.
DATA ANALYSIS AS AT 5.00 PM TUESDAY 11 OCTOBER 2016.

lack of robust control:

“Nine of the 13 wind farms online did not ride through the six voltage disturbances experienced during the event.”

between the lines:

Conventional system would have been more resilient (?)

ERCOT CONCEPT PAPER

Future Ancillary Services in ERCOT

ERCOT is recommending the transition to the following five AS products plus one additional AS that would be used during some transition period:

1. Synchronous Inertial Response Service (SIR),
2. Fast Frequency Response Service (FFR),
3. Primary Frequency Response Service (PFR),
4. Up and Down Regulating Reserve Service (RR), and
5. Contingency Reserve Service (CR).

6. **Supplemental Reserve Service (SR)** (during transition period)

Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe

-- Requirements and impacting factors --

RG-CE System Protection & Dynamics Sub Group

However, as these sources are fully controllable, a regulation can be added to the inverter to provide “synthetic inertia”. This can also be seen as a short term frequency support. On the other hand, these sources might be quite restricted with respect to the available capacity and possible activation time. The inverters have a very low overload capability compared to synchronous machines.
The concerns are not hypothetical issues broadly recognized by TSOs, device manufacturers, academia, agencies, etc.

UPDATE REPORT – BLACK SYSTEM EVENT IN SOUTH AUSTRALIA ON 28 SEPTEMBER 2016

AN UPDATE TO THE PRELIMINARY OPERATING INCIDENT REPORT FOR THE NATIONAL ELECTRICITY MARKET. DATA ANALYSIS AS AT 5.00 PM TUESDAY 11 OCTOBER 2016.

lack of robust control:

“Nine of the 13 wind farms online did not ride through the six voltage disturbances experienced during the event.”

between the lines:

conventional system would have been more resilient (?)
The concerns are not hypothetical issues broadly recognized by TSOs, device manufacturers, academia, agencies, etc.

UPDATE REPORT

BLACK SYSTEM EVENT

IN SOUTH AUSTRALIA ON 28 SEPTEMBER 2016

AN UPDATE TO THE PRELIMINARY OPERATING INCIDENT REPORT FOR THE NATIONAL ELECTRICITY MARKET.

DATA ANALYSIS AS AT 5.00 PM TUESDAY 11 OCTOBER 2016.

lack of robust control:

“Nine of the 13 wind farms online did not ride through the six voltage disturbances experienced during the event.”

between the lines:

conventional system would have been more resilient (?)
The concerns are not hypothetical issues broadly recognized by TSOs, device manufacturers, academia, agencies, etc.

lack of robust control:

“Nine of the 13 wind farms online did not ride through the six voltage disturbances experienced during the event.”

between the lines:

conventional system would have been more resilient (?)
The concerns are not hypothetical
issues broadly recognized by TSOs, device manufacturers, academia, agencies, etc.

lack of robust control:

“Nine of the 13 wind farms online did not ride through the six voltage disturbances experienced during the event.”

between the lines:

conventional system would have been more resilient (?)

obstacle to sustainability:

power electronics integration
Foundations and Challenges of Low-Inertia Systems

(Invited Paper)

Federico Milano
University College Dublin, Ireland
email: federico.milano@ucd.ie

Florian Dörfler and Gabriela Hug
ETH Zürich, Switzerland
emails: dorfler@ethz.ch, ghug@ethz.ch

David J. Hill* and Gregor Verbič
University of Sydney, Australia
* also University of Hong Kong
emails: dhill@eee.hku.hk, gregor.verbic@sydney.edu.au

The later sections contain many suggestions for further work, which can be summarized as follows:

- **New models** are needed which balance the need to include key features without burdening the model (whether for analytical or computational work) with uneven and excessive detail;

- **New stability theory** which properly reflects the new devices and time-scales associated with CIG, new loads and use of storage;

- Further **computational work** to achieve sensitivity guidelines including data-based approaches;

- **New control methodologies**, e.g. new controller to mitigate the high rate of change of frequency in low inertia systems;

- A power converter is a fully actuated, modular, and very fast control system, which are nearly antipodal characteristics to those of a synchronous machine. Thus, **one should critically reflect the control** of a converter as a virtual synchronous machine; and

- The lack of inertia in a power system does not need to (and cannot) be fixed by simply “adding inertia back” in the systems.
Foundations and Challenges of Low-Inertia Systems
(Invited Paper)

Federico Milano
University College Dublin, Ireland
email: federico.milano@ucd.ie

Florian Dörfler and Gabriela Hug
ETH Zürich, Switzerland
emails: dorfler@ethz.ch,
ghug@ethz.ch

David J. Hill* and Gregor Verbič
University of Sydney, Australia
* also University of Hong Kong
emails: dhill@eee.hku.hk,
gregor.verbic@sydney.edu.au

The later sections contain many suggestions for further work, which can be summarized as follows:

- **New models** are needed which balance the need to include key features without burdening the model (whether for analytical or computational work) with uneven and excessive detail;

- **New stability theory** which properly reflects the new devices and time-scales associated with CIG, new loads and use of storage;

- Further **computational work** to achieve sensitivity guidelines including data-based approaches;

- **New control methodologies**, e.g. new controller to mitigate the high rate of change of frequency in low inertia systems;

- A power converter is a fully actuated, modular, and very fast control system, which are nearly antipodal characteristics to those of a synchronous machine. Thus, **one should critically reflect the control** of a converter as a virtual synchronous machine; and

- The lack of inertia in a power system does not need to (and cannot) be fixed by simply “adding inertia back” in the systems.

a key unresolved challenge: control of power converters in low-inertia grids

→ industry & power community willing to explore **green-field approach** (see MIGRATE) with advanced control methods & theoretical certificates
Outline

Introduction: Low-Inertia Power Systems

Problem Setup: Modeling and Specifications

State of the Art: Comparison & Critical Evaluation

Dispatchable Virtual Oscillator Control

Comparison & Discussion
Basic modeling insights: the network

interconnecting lines via Π-models & ODEs

conventional assumption: quasi-steady state algebraic model

\[
\begin{pmatrix}
i_1 \\
\vdots \\
i_n
\end{pmatrix} = \begin{pmatrix}
y_{11} & \cdots & y_{1n} \\
\vdots & \ddots & \vdots \\
y_{n1} & \cdots & y_{nn}
\end{pmatrix} \begin{pmatrix}
-1 \\
\vdots \\
-1
\end{pmatrix}
\]

\[
\begin{pmatrix}
v_1 \\
\vdots \\
v_n
\end{pmatrix}
\]

Laplacian matrix with \(y_{kj} = \frac{1}{\text{complex impedance}}\)

salient feature: local measurement reveals synchronizing coupling

\[
l_{ik} = \sum_{j=1}^{n} y_{kj} (v_k - v_j)
\]

global synchronization

note: quasi-steady-state assumption is flawed
Basic modeling insights: the network

interconnecting lines via \(\Pi \)-models & ODEs

▶ **conventional assumption:** quasi-steady state algebraic model

\[
\begin{bmatrix}
i_1 \\
\vdots \\
i_n
\end{bmatrix}
= \begin{bmatrix}
- y_{k1} & \cdots & \sum_{j=1}^{n} y_{kj} & \cdots & - y_{kn} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\vdots & & \vdots & & \vdots \\
- y_{kn} & & - y_{kn} & & - y_{kn}
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_n
\end{bmatrix}
\]

nodal injections \hspace{1cm} \text{Laplacian matrix with } y_{k,j} = 1/ \text{complex impedance} \hspace{1cm} \text{nodal potentials}

▶ **salient feature:** local measurement reveals synchronizing coupling

▶ **note:** quasi-steady-state assumption is flawed

5
Basic modeling insights: the network

interconnecting lines via Π-models & ODEs

▶ conventional assumption: quasi-steady state algebraic model

\[
\begin{bmatrix}
 i_1 \\
 \vdots \\
 i_n
\end{bmatrix} = \begin{bmatrix}
 \vdots & \vdots & \vdots & \vdots \\
 -y_{k1} & \sum_{j=1}^{n} y_{kj} & \vdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \vdots & -y_{kn}
\end{bmatrix} \begin{bmatrix}
 v_1 \\
 \vdots \\
 v_n
\end{bmatrix}
\]

Laplacian matrix with \(y_{kj} = 1 / \text{complex impedance} \)

nodal injections

nodal potentials

▶ salient feature: local measurement reveals synchronizing coupling

\[
i_k = \sum_j y_{kj} (v_k - v_j)
\]

local variable

global synchronization

note: quasi-steady-state assumption is flawed in low-inertia systems
Basic modeling insights: the network

interconnecting lines via Π-models & ODEs

▶ conventional assumption: quasi-steady state **algebraic model**

\[
\begin{bmatrix}
i_1 \\
\vdots \\
i_n
\end{bmatrix} = \begin{bmatrix}
\vdots \\
-y_{k1} & \cdots & \sum_{j=1}^{n} y_{kj} & \cdots & -y_{kn} \\
\vdots \\
\end{bmatrix} \begin{bmatrix}
v_1 \\
\vdots \\
v_n
\end{bmatrix}
\]

- nodal injections
- Laplacian matrix with \(y_{kj} = 1 / \text{complex impedance} \)
- nodal potentials

▶ salient feature: **local** measurement reveals **synchronizing** coupling

\[
i_k = \sum_j y_{kj} (v_k - v_j)
\]

- local variable
- global synchronization

▶ note: quasi-steady-state **assumption is flawed** in low-inertia systems
Basic modeling insights: the power converter

DC port modulation control (3-phase) LC output filter AC port to power grid

\[\text{L, R, G, C} \]

network
Basic modeling insights: the power converter

- **passive DC port** port \((i_{dc}, v_{dc})\) for energy balance control
 - details mostly neglected today: assume \(v_{dc}\) to be stiffly regulated

- **modulation** \(\equiv\) lossless signal transformer (averaged)
 - controlled switching voltage \(v_{dc}m\) with \(m \in [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}]\)

- **LC filter** to smoothen harmonics with \(R, G\) modeling filter/switching losses
Basic modeling insights: the power converter

- **passive DC port** port \((i_{dc}, v_{dc})\) for energy balance control
 - details mostly neglected today: assume \(v_{dc}\) to be stiffly regulated

- **modulation** \(\equiv\) lossless signal transformer (averaged)
 - controlled switching voltage \(v_{dc}m\) with \(m \in [-\frac{1}{2}, +\frac{1}{2}] \times [-\frac{1}{2}, +\frac{1}{2}]\)

- **LC filter** to smoothen harmonics with \(R, G\) modeling filter/switching losses

well actuated, modular, & fast control system \(\approx\) **controllable voltage source**
Objectives for power converter control

1. *synchronous frequency*

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k
\]

\sim \text{harmonic oscillations at identical } \omega_0
Objectives for power converter control

1. **synchronous frequency**

\[
\frac{d}{dt} \begin{bmatrix} v_k \end{bmatrix} = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} \begin{bmatrix} v_k \end{bmatrix}
\]

\sim \text{harmonic oscillations at identical } \omega_0

2. **voltage amplitude**

\[
\|v_k\| = v_k^*
\]
Objectives for power converter control

1. **synchronous frequency**

\[\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k \]

\(\sim \) harmonic oscillations at identical \(\omega_0 \)

2. **voltage amplitude**

\[\|v_k\| = v^* \]

\(\sim \) \(v^* \) uniform for ease of presentation
Objectives for power converter control

1. **synchronous frequency**
 \[
 \frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k
 \]
 \(\sim\) harmonic oscillations at identical \(\omega_0\)

2. **voltage amplitude**
 \[
 \|v_k\| = v^*
 \]
 \(\sim\) \(v^*\) uniform for ease of presentation

3. **active & reactive power injections**
 \[
 v_k^\top i_{o,k} = p_k^* , \quad v_k^\top \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix} i_{o,k} = q_k^*
 \]
 \(\sim\) non-linear but local specification
Objectives for power converter control

1. **synchronous frequency**
 \[
 \frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k
 \]
 \[\sim\] harmonic oscillations at identical \(\omega_0 \)

2. **voltage amplitude**
 \[\|v_k\| = v^*\]
 \[\sim v^*\] uniform for ease of presentation

3. **active & reactive power injections**
 \[v_k^\top i_{o,k} = p_k^*, \quad v_k^\top \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix} i_{o,k} = q_k^*\]
 \[\sim\] non-linear but local specification

\[\iff\] **relative voltage angles**
\[v_k = \begin{bmatrix} \cos(\theta_{jk}^*) & -\sin(\theta_{jk}^*) \\ \sin(\theta_{jk}^*) & \cos(\theta_{jk}^*) \end{bmatrix} v_j\]
\[\sim\] linear but non-local specification
Objectives for power converter control

1. **synchronous frequency**

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & \omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k
\]

≈ harmonic oscillations at identical \(\omega_0 \)

2. **voltage amplitude**

\[
\|v_k\| = v^*
\]

≈ \(v^* \) uniform for ease of presentation

3. **active & reactive power injections**

\[
v_k^\top i_{o,k} = p^*_k , \quad v_k^\top \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix} i_{o,k} = q^*_k
\]

≈ non-linear but local specification

\[\leftrightarrow\] **relative voltage angles**

\[
v_k = \begin{bmatrix} \cos(\theta^*_j k) & -\sin(\theta^*_j k) \\ \sin(\theta^*_j k) & \cos(\theta^*_j k) \end{bmatrix} v_j
\]

≈ linear but non-local specification
Main control challenges

Nonlinear objectives (v^*_k, θ^*_{jk}) & stabilization of synchronous limit cycle

Intrinsic synchronization to ω_0 rather than following weak grid frequency

Local set-points: voltage / power (v^*_k, p^*_k, q^*_k) but no relative angles θ^*_{jk}

Decentralized control: only local measurements $(v_k, i_{o,k})$ available

Fragile physics needs tight control: state constraints & negligible storage

No time-scale separation between slow sources & fast network + fully controllable voltage sources & stable linear network dynamics
Main control challenges

- **Nonlinear objectives** \((v^*_k, \theta^*_{k,j})\) & stabilization of synchronous **limit cycle**
Main control challenges

\[\omega \ast jk \omega k \omega j \omega \ast k \omega 0 \omega 0 \]

- \textit{nonlinear objectives} \((v_k^*, \theta_{jk}^*)\) & stabilization of synchronous \textit{limit cycle}
- \textit{intrinsic synchronization} to \(\omega_0\) rather than following weak grid frequency

\[C \]

\[v_{dc} \]

\[v_{o,k} \]
Main control challenges

- **Nonlinear objectives** \((v_k^*, \theta_k^*)\) & stabilization of synchronous *limit cycle*
- **Intrinsic synchronization** to \(\omega_0\) rather than following weak grid frequency
- **Local set-points**: voltage/power \((v_k^*, p_k^*, q_k^*)\) but no relative angles \(\theta_{k,j}^*\)
Main control challenges

- **nonlinear objectives** \((v_k^*, \theta_{jk}^*)\) & stabilization of synchronous *limit cycle*
- **intrinsic synchronization** to \(\omega_0\) rather than following weak grid frequency
- **local set-points**: voltage/power \((v_k^*, p_k^*, q_k^*)\) but no relative angles \(\theta_{k,j}^*\)
- **decentralized control**: only local measurements \((v_k, i_{o,k})\) available
Main control challenges

- **Nonlinear objectives** \((v_k^*, \theta_{kj}^*) \) & stabilization of synchronous **limit cycle**
- **Intrinsic synchronization** to \(\omega_0 \) rather than following weak grid frequency
- **Local set-points**: voltage/power \((v_k^*, p_k^*, q_k^*) \) but no relative angles \(\theta_{kj}^* \)
- **Decentralized control**: only local measurements \((v_k, i_{o,k}) \) available
- **Fragile physics needs tight control**: state constraints & negligible storage
Main control challenges

- **nonlinear objectives** \((v_k^*, \theta_{jk}^*)\) & stabilization of synchronous *limit cycle*
- **intrinsic synchronization** to \(\omega_0\) rather than following weak grid frequency
- **local set-points**: voltage/power \((v_k^*, p_k^*, q_k^*)\) but no relative angles \(\theta_{k,j}^*\)
- **decentralized control**: only local measurements \((v_k, i_{o,k})\) available
- **fragile physics needs tight control**: state constraints & negligible storage
- **no time-scale separation** between slow sources & fast network
Main control challenges

- **nonlinear objectives** \((v_k^*, \theta_{k,j}^*)\) & stabilization of synchronous limit cycle
- **intrinsic synchronization** to \(\omega_0\) rather than following weak grid frequency
- **local set-points**: voltage/power \((v_k^*, p_k^*, q_k^*)\) but no relative angles \(\theta_{k,j}^*\)
- **decentralized control**: only local measurements \((v_k, i_{o,k})\) available
- **fragile physics needs tight control**: state constraints & negligible storage
- **no time-scale separation** between slow sources & fast network
- **fully controllable** voltage sources & stable linear network dynamics
Naive baseline solution: emulation of virtual inertia
Cartoon of low-level power converter control

1. acquiring & processing of **AC measurements**
2. synthesis of **references**
 “how would a synchronous generator respond now?”
3. cascaded PI controllers to **track** references
 assumption: no state constraints encountered
4. **actuation** via modulation
5. **energy balancing** via fast control of DC-side supply
 assumption: unlimited power & instantaneous
Virtual synchronous machine ≡ flywheel emulation

- **reference model**: detailed model of synchronous generator + controls
Virtual synchronous machine ≡ flywheel emulation

- **reference model**: detailed model of synchronous generator + controls
- robust **implementation** requires tricks: low-pass filters for dissipation, virtual impedances for saturation, limiters, ...

[D'Arco et al., '15]
Virtual synchronous machine \equiv flywheel emulation

- **reference model**: detailed model of synchronous generator + controls
- **robust implementation** requires tricks: low-pass filters for dissipation, virtual impedances for saturation, limiters, ...

\rightarrow most commonly accepted solution in industry (§ backward compatibility?)

[D'Arco et al., '15]
Virtual synchronous machine \(\equiv \) flywheel emulation

- **reference model**: detailed model of synchronous generator + controls

- robust **implementation** requires tricks: low-pass filters for dissipation, virtual impedances for saturation, limiters,

\[\rightarrow \] most commonly accepted solution in industry (\& backward compatibility ?)

\[\rightarrow \] **poor fit**: converter \(\neq \) flywheel
 - converter: fast actuation & **no** significant energy storage
 - machine: slow actuation & significant energy storage

\[\rightarrow \] over-parametrized & ignores limits

[D'Arco et al., '15]
Virtual synchronous machine ≡ flywheel emulation

- **reference model**: detailed model of synchronous generator + controls
- **robust implementation** requires tricks: low-pass filters for dissipation, virtual impedances for saturation, limiters, ...

→ most commonly **accepted solution** in **industry** (ṣ backward compatibility ?)

→ **poor fit**: converter ≠ flywheel
 - converter: **fast** actuation & no significant **energy storage**
 - machine: **slow** actuation & significant **energy storage**

→ **over-parametrized** & ignores **limits**

→ **performs very poorly** post-fault

[D'Arco et al., '15]
Droop as simplest reference model

- **frequency control** by mimicking $p - \omega$ droop property of synchronous machine:

 $$\omega - \omega_0 \propto p - p^*$$
Droop as simplest reference model

- **frequency control** by mimicking $p - \omega$ droop property of synchronous machine:

 $$\omega - \omega_0 \propto p - p^*$$

- **voltage control** via $q - \|v\|$ droop control:

 $$\frac{d}{dt} \|v\| = -c_1 (\|v\| - v^*) - c_2 (q - q^*)$$
Droop as simplest reference model

- **frequency control** by mimicking $p - \omega$ droop property of synchronous machine:

 $\omega - \omega_0 \propto p - p^*$

- **voltage control** via $q - \|v\|$ droop control:

 $$\frac{d}{dt} \|v\| = -c_1(\|v\| - v^*) - c_2(q - q^*)$$

- **reference** are generator controls

 → direct control of (p, ω) and $(q, \|v\|)$ assuming they are independent (approx. true only near steady state)
Droop as simplest reference model

- **frequency control** by mimicking $p - \omega$ droop property of synchronous machine:

\[
\omega - \omega_0 \propto p - p^*
\]

- **voltage control** via $q - \|v\|$ droop control:

\[
\frac{d}{dt} \|v\| = -c_1(\|v\| - v^*) - c_2(q - q^*)
\]

- **reference** are generator controls

 → direct control of (p, ω) and $(q, \|v\|)$ assuming they are independent (approx. true only near steady state)

 → requires **tricks in implementation**: similar to virtual synchronous machine
Droop as simplest reference model

- **Frequency control** by mimicking $p - \omega$ droop property of synchronous machine:

 $$\omega - \omega_0 \propto p - p^*$$

- **Voltage control** via $q - \|v\|$ droop control:

 $$\frac{d}{dt} \|v\| = -c_1(\|v\| - v^*) - c_2(q - q^*)$$

- **Reference** are generator controls

 - Direct control of (p, ω) and $(q, \|v\|)$ assuming they are independent (approx. true only near steady state)

 - Requires **tricks in implementation**
 - Similar to virtual synchronous machine

 - **Good small-signal** but poor large signal behavior (region of attraction)
Original Virtual Oscillator Control (VOC)

nonlinear & open limit cycle oscillator as reference model

[J. Aracil & F. Gordillo, ’02], [Torres, Hespanha, Moehlis, ’11],
[Johnson, Dhople, Krein, ’13], [Dhople, Johnson, Dörfler, ’14]
Original Virtual Oscillator Control (VOC)

nonlinear & open limit cycle oscillator as reference model

![Diagram of a nonlinear & open limit cycle oscillator](image)

\[g(v) + \omega v - \omega(v) \]

\[g(v) \]

\[v \]

\[\omega(v) \]

\[i_o \]

[Simplified model amenable to theoretic analysis → almost global synchronization & local droop]

- In practice proven to be a robust mechanism with performance superior to droop & others
- Problem: cannot be controlled to meet specifications on amplitude & power injections

[J. Aracil & F. Gordillo, '02], [Torres, Hespanha, Moehlis, '11], [Johnson, Dhople, Krein, '13], [Dhople, Johnson, Dörfler, '14]
Original Virtual Oscillator Control (VOC)

- **nonlinear & open limit cycle oscillator** as reference model

- simplified model amenable to theoretic analysis
 → *almost global synchronization & local droop*

- in practice proven to be **robust mechanism**
 with performance superior to droop & others
 → **problem**: cannot be controlled(?) to meet
 specifications on amplitude & power injections

[J. Aracil & F. Gordillo, ’02], [Torres, Hespanha, Moehlis, ’11],
[Johnson, Dhople, Krein, ’13], [Dhople, Johnson, Dörfler, ’14]
Comparison of grid-forming control [Tayyebi et al., '19]

droop control

- good performance near steady state
- relies on decoupling & small attraction basin

synchronous machine emulation

- backward compatible in nominal case
- not resilient under large disturbances

virtual oscillator control (VOC)

- robust & almost globally synchronization
- cannot meet amplitude/power specifications
Comparison of grid-forming control [Tayyebi et al., '19]

droop control

- good performance near steady state
- relies on decoupling & small attraction basin

synchronous machine emulation

- backward compatible in nominal case
- not resilient under large disturbances

virtual oscillator control (VOC)

- robust & almost globally synchronization
- cannot meet amplitude/power specifications

today: dispatchable virtual oscillator

[Colombino, Groß, Brouillon, & Dörfler, '17, '18, '19]
[Seo, Subotic, Johnson, Colombino, Groß, & Dörfler, '19]
Model & control objectives

(simplified multi-converter system model)

➤ converter = terminal voltage $u_k \in \mathbb{R}^2$
Model & control objectives

(assumptions can all be generalized)

simplified multi-converter system model

- converter = terminal voltage $v_k \in \mathbb{R}^2$
- line dynamics = steady-state Π-model with line admittance $\|Y_{jk}\| = \frac{1}{\sqrt{r_{kj}^2 + \omega_0^2 \ell_{kj}^2}}$

DC port modulation control (3-phase) LC output filter AC port to power grid

ω_{dc}

ω_{dc}

v_{dc}

i_L

R

L

C

G

i_o

\mathbf{v}

\mathbf{u}

\mathbf{m}

ω_0

ℓ_{kj}

r_{kj}

κ

Δ

\mathbf{v}_k

\mathbf{p}^\star_k

\mathbf{q}^\star_k

Δ

\mathbf{v}_j

\mathbf{v}_k

θ^\star_{jk}

θ^\star_{jk}

ω^\star_{jk}

ω^\star_k

ω^\star_j
Model & control objectives

(assumptions can all be generalized)

simplified multi-converter system model

- **converter** = terminal voltage $v_k \in \mathbb{R}^2$
- **line dynamics** = steady-state Π-model with line admittance $\|Y_{jk}\| = 1/\sqrt{r_{kj}^2 + \omega_0^2\ell_{kj}^2}$
- **homogeneous lines** with $\kappa = \frac{\ell_{jk}}{r_{jk}}$ constant
Model & control objectives
(assumptions can all be generalized)

simplified multi-converter system model

- **converter** = terminal voltage \(v_k \in \mathbb{R}^2 \)
- **line dynamics** = steady-state II-model with line admittance \(\|Y_{jk}\| = \frac{1}{\sqrt{r^2_{kj} + \omega_0^2 \ell^2_{kj}}} \)
- **homogeneous lines** with \(\kappa = \frac{\ell_{jk}}{r_{jk}} \) constant

desired steady-state behavior
Model & control objectives

(assumptions can all be generalized)

simplified multi-converter system model

- converter = terminal voltage $v_k \in \mathbb{R}^2$
- line dynamics = steady-state Π-model with line admittance $\|Y_{jk}\| = 1/\sqrt{r_{kj}^2 + \omega_0^2 \ell_{kj}^2}$
- homogeneous lines with $\kappa = \frac{\ell_{jk}}{r_{jk}}$ constant

desired steady-state behavior

- nominal synchronous frequency
 \[
 \frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k
 \]
Model & control objectives

(situations can all be generalized)

simplified multi-converter system model

- converter = terminal voltage $v_k \in \mathbb{R}^2$
- line dynamics = steady-state II-model with line admittance $\|Y_{jk}\| = 1/\sqrt{r_{k,j}^2 + \omega_0^2\ell_{k,j}^2}$
- homogeneous lines with $\kappa = \frac{\ell_{j,k}}{r_{j,k}}$ constant

desired steady-state behavior

- nominal synchronous frequency

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k
\]

- voltage amplitude (uniform for this talk)

\[
\|v_k\| = v^*
\]
Model & control objectives
(assumptions can all be generalized)

simplified multi-converter system model

- **converter** = terminal voltage $\mathbf{v}_k \in \mathbb{R}^2$
- **line dynamics** = steady-state II-model with line admittance $\|Y_{jk}\| = \frac{1}{\sqrt{r_{kj}^2 + \omega_0^2\ell_{kj}^2}}$
- **homogeneous lines** with $\kappa = \frac{\ell_{jk}}{r_{jk}}$ constant

desired steady-state behavior

- **nominal synchronous frequency**
 \[
 \frac{d}{dt} \mathbf{v}_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} \mathbf{v}_k
 \]

- **voltage amplitude** (uniform for this talk)
 $\|\mathbf{v}_k\| = v^*$

- **active & reactive power injections**
 $\mathbf{v}_k^\top \mathbf{i}_{o,k} = P_k^*$, $\mathbf{v}_k^\top \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{i}_{o,k} = q_k^*$
Model & control objectives
(assumptions can all be generalized)

simplified multi-converter system model

- **converter** = terminal voltage $v_k \in \mathbb{R}^2$
- **line dynamics** = steady-state II-model with line admittance $\|Y_{jk}\| = 1/\sqrt{r_{kj}^2 + \omega_0^2 \ell_{kj}^2}$
- **homogeneous lines** with $\kappa = \frac{\ell_{jk}}{r_{jk}}$ constant

desired steady-state behavior

- **nominal synchronous frequency**
 \[
 \frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k
 \]

- **voltage amplitude** (uniform for this talk)
 \[
 \|v_k\| = v^*
 \]

- **active & reactive power injections**
 \[
 v_k^\top i_{o,k} = p_k^*, \quad v_k^\top \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} i_{o,k} = q_k^*
 \]

\[\iff\] relative angles:
 \[
 v_j = \begin{bmatrix} \cos(\theta_{jk}^*) & -\sin(\theta_{jk}^*) \\ \sin(\theta_{jk}^*) & \cos(\theta_{jk}^*) \end{bmatrix} v_k
 \]
Colorful idea: closed-loop target dynamics

\[
\frac{dv_k}{dt} = \begin{bmatrix} 0 & -\omega_0 & 0 \\ 0 & 0 & -\omega_0 \\ 0 & 0 & 0 \end{bmatrix} v_k + \omega_0 \omega_0 \cdot (\|v_k\|_2^2 - \|v_k\|_2^2) v_k
\]

Rotation at \(\omega_0 + c_2 \cdot (\|v_k\|_2^2 - \|v_k\|_2^2) v_k\)

Amplitude regulation to \(v^*_k + c_1 \cdot n \sum_{j=1} v_{jk} (v_j - [\cos(\theta^*_jk) \sin(\theta^*_jk), -\sin(\theta^*_jk) \cos(\theta^*_jk)]) v_k)\)

Synchronization to desired relative angles \(\theta^*_jk\)
Colorful idea: closed-loop target dynamics

\[d\frac{dt}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 & 0 \\ -\omega_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} v_k \]

\[\theta_{jk}^* = \begin{bmatrix} \cos(\theta_{jk}^*) & -\sin(\theta_{jk}^*) \\ \sin(\theta_{jk}^*) & \cos(\theta_{jk}^*) \end{bmatrix} v_k \]

\[v_k^* = v_k + c_1 \sum_{j=1}^n w_{jk} (v_j - \theta_{jk}^*) \]

\[\omega_0 \]

\[\omega_0 \]

\[v_k \]

\[v_j \]
Colorful idea: closed-loop target dynamics

\[
\frac{d}{dt} \mathbf{v}_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} \mathbf{v}_k + c_2 \cdot (\|\mathbf{v}_k\|^2 - \|\mathbf{v}_k^*\|^2) \mathbf{v}_k
\]
- rotation at \(\omega\)
- amplitude regulation to \(v_k^*\)

\[
+ c_1 \cdot \sum_{j=1}^{n} w_{jk} \left(\mathbf{v}_j - \begin{bmatrix} \cos(\theta_{jk}^*) & -\sin(\theta_{jk}^*) \\ \sin(\theta_{jk}^*) & \cos(\theta_{jk}^*) \end{bmatrix} \mathbf{v}_k \right)
\]
- synchronization to desired relative angles \(\theta_{jk}^*\)
Decentralized implementation of dynamics

\[\sum_j w_{jk} (v_j - R(\theta^*_{jk})v_k) \]

need to know \(w_{jk}, v_j, v_k \) and \(\theta^*_{jk} \).
Decentralized implementation of dynamics

\[\sum_j w_{jk}(v_j - R(\theta^*_j) v_k) = \sum_j w_{jk}(v_j - v_k) + \sum_j w_{jk}(I - R(\theta^*_j)) v_k \]

need to know \(w_{jk}, v_j, v_k \) and \(\theta^*_j \)

“Laplacian” feedback

local feedback: \(K_k(\theta^*) v_k \)
Decentralized implementation of dynamics

\[\sum_j w_{jk} (v_j - R(\theta^*_j) v_k) = \sum_j w_{jk} (v_j - v_k) + \sum_j w_{jk} (I - R(\theta^*_j)) v_k \]

need to know \(w_{jk}, v_j, v_k \) and \(\theta^*_j \)

“Laplacian” feedback
local feedback: \(\mathcal{K}_k(\theta^*) v_k \)

\textit{insight I: non-local measurements from} communication via physics

\[\dot{i}_{o,k} = \sum_j y_{jk} (v_j - v_k) \]

local feedback
distributed feedback with \(w_{jk} = y_{kj} = \|y_{kj}\| R(\kappa)^{-1} \)
Decentralized implementation of dynamics

\[\sum_j w_{jk} (v_j - R(\theta^*_{jk}) v_k) = \sum_j w_{jk} (v_j - v_k) + \sum_j w_{jk} (I - R(\theta^*_{jk})) v_k \]

need to know \(w_{jk}, v_j, v_k \) and \(\theta^*_{jk} \)

“Laplacian” feedback

local feedback: \(K_k(\theta^*) v_k \)

insight I: non-local measurements from **communication via physics**

\[i_{o,k} = \sum_j y_{jk} (v_j - v_k) \]

distributed feedback with \(w_{jk} = y_{kj} = \| y_{kj} \| R(\kappa)^{-1} \)

insight II: angle set-points & line-parameters from **power flow equations**

\[p^*_k = v^* \sqrt{2} \sum_j \frac{r_{jk}(1-\cos(\theta^*_{jk}))-\omega_0 \ell_{jk} \sin(\theta^*_{jk})}{r_{jk}^2 + \omega_0^2 \ell_{jk}^2} \]

\[q^*_k = -v^* \sqrt{2} \sum_j \frac{\omega_0 \ell_{jk}(1-\cos(\theta^*_{jk}))+r_{jk} \sin(\theta^*_{jk})}{r_{jk}^2 + \omega_0^2 \ell_{jk}^2} \]
Decentralized implementation of dynamics

\[\sum_j w_{jk} (v_j - R(\theta^*_j) v_k) = \underbrace{\sum_j w_{jk} (v_j - v_k)}_{\text{Laplacian feedback}} + \underbrace{\sum_j w_{jk} (I - R(\theta^*_j)) v_k}_{\text{local feedback: } K_k(\theta^*) v_k} \]

need to know \(w_{jk}, v_j, v_k \) and \(\theta^*_j \)

Insight I: non-local measurements from communication via physics

\[\dot{i}_{o,k} = \sum_j y_{jk} (v_j - v_k) \]

local feedback distributed feedback with \(w_{jk} = y_{kj} = \| y_{kj} \| R(\kappa)^{-1} \)

Insight II: angle set-points & line-parameters from power flow equations

\[\begin{aligned} &p_k^* = v^* \sum_j r_{jk} \frac{(1 - \cos(\theta^*_j)) - \omega_0 \ell_j \sin(\theta^*_j)}{r_{jk}^2 + \omega_0^2 \ell_{jk}^2} \\ &q_k^* = -v^* \sum_j \frac{\omega_0 \ell_j (1 - \cos(\theta^*_j)) + r_{jk} \sin(\theta^*_j)}{r_{jk}^2 + \omega_0^2 \ell_{jk}^2} \end{aligned} \]

\[\Rightarrow K_k(\theta^*) = \frac{1}{v^*} R(\kappa) \begin{bmatrix} q_k^* \\ -p_k^* \end{bmatrix} \]

\[K_k(\theta^*) \]

\[\begin{bmatrix} q_k^* \\ -p_k^* \end{bmatrix} \]

global parameters local parameters
Properties of virtual oscillator control

1. desired target dynamics can be realized via **fully decentralized control**

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k + c_1 \cdot R(\kappa) \left(\frac{1}{v^2} \begin{bmatrix} q_k^* & p_k^* \\ -p_k^* & q_k^* \end{bmatrix} v_k - i_{o,k} \right) + c_2 \cdot (v^2 - \|v_k\|^2) v_k
\]

- rotation at \(\omega_0 \)
- synchronization through physics
- local amplitude regulation
Properties of virtual oscillator control

1. desired target dynamics can be realized via **fully decentralized control**

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k + c_1 \cdot R(\kappa) \left(\frac{1}{v^{\star 2}} \begin{bmatrix} q_k^\star & p_k^\star \\ -p_k^\star & q_k^\star \end{bmatrix} v_k - i_{o,k} \right) + c_2 \cdot (v^{\star 2} - ||v_k||^2) v_k
\]

- rotation at \(\omega_0 \)
- synchronization through physics
- local amplitude regulation

2. connection to **droop control** revealed in polar coordinates (for inductive grid)

\[
\frac{d}{dt} \theta_k = \dot{\omega}_0 + c_1 \left(\frac{p_k^\star}{v^{\star 2}} - \frac{p_k}{||v_k||^2} \right)
\]
Properties of virtual oscillator control

1. desired target dynamics can be realized via **fully decentralized control**

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k + c_1 \cdot R(\kappa) \left(\frac{1}{v^*} \begin{bmatrix} q_k^* & p_k^* \\ -p_k^* & q_k^* \end{bmatrix} v_k - i_{o,k} \right) + c_2 \cdot (v^* - ||v_k||^2) v_k
\]

- rotation at \(\omega_0 \)
- synchronization through physics
- local amplitude regulation

2. connection to **droop control** revealed in polar coordinates (for inductive grid)

\[
\frac{d}{dt} \theta_k = \omega_0 + c_1 \left(\frac{p_k^*}{v^*} - \frac{p_k}{||v_k||^2} \right) ||v_k|| \approx 1 \omega_0 + c_1 \left(p_k^* - p_k \right) (p - \omega \text{ droop})
\]
Properties of virtual oscillator control

1. desired target dynamics can be realized via **fully decentralized control**

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k + c_1 \cdot R(\kappa) \left(\frac{1}{v^*} \begin{bmatrix} q_0^* & p_0^* \\ -p_0^* & q_0^* \end{bmatrix} v_k - i_{o,k} \right) + c_2 \cdot (v^* - \|v_k\|^2) v_k
\]

- rotation at \(\omega_0 \)
- synchronization through physics
- local amplitude regulation

2. connection to **droop control** revealed in polar coordinates (for inductive grid)

\[
\frac{d}{dt} \theta_k = \omega_0 + c_1 \left(\frac{p_k^*}{v^*} - \frac{p_k}{\|v_k\|^2} \right) \cdot \|v_k\| \approx 1 \quad \omega_0 + c_1 \left(p_k^* - p_k \right) \left(p - \omega \text{ droop} \right)
\]

\[
\frac{d}{dt} \|v_k\|
\]
Properties of virtual oscillator control

1. desired target dynamics can be realized via **fully decentralized control**

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k + c_1 \cdot R(\kappa) \left(\frac{1}{|v|^2} \begin{bmatrix} q_k^* & p_k^* \\ -p_k^* & q_k^* \end{bmatrix} v_k - i_{o,k} \right) + c_2 \cdot (|v|^2 - \|v_k\|^2) v_k
\]

- rotation at \(\omega_0\)
- synchronization through physics
- local amplitude regulation

2. connection to **droop control** revealed in polar coordinates (for inductive grid)

\[
\frac{d}{dt} \theta_k = \omega_0 + c_1 \left(\frac{p_k^*}{|v|^2} - \frac{p_k}{\|v_k\|^2} \right) \|v_k\| \approx 1 \approx \omega_0 + c_1 \left(p_k^* - p_k \right) (p - \omega \text{ droop})
\]

\[
\frac{d}{dt} \|v_k\| \approx c_1 \left(q_k^* - q_k \right) + c_2 \left(|v|^* - \|v_k\| \right) \approx 1 \quad (q - \|v\| \text{ droop})
\]
Properties of virtual oscillator control

1. desired target dynamics can be realized via **fully decentralized control**

\[
\frac{d}{dt} \mathbf{v}_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} \mathbf{v}_k + c_1 \cdot \mathbf{R} (\kappa) \left(\frac{1}{\mathbf{v}^*} \left[\begin{array}{cc} q_k^* & p_k^* \\ -p_k^* & q_k^* \end{array} \right] \mathbf{v}_k - \mathbf{i}_{o,k} \right) + c_2 \cdot \left(\mathbf{v}^* - \| \mathbf{v}_k \|^2 \right) \mathbf{v}_k
\]

- rotation at \(\omega_0 \)
- synchronization through physics
- local amplitude regulation

2. connection to **droop control** revealed in polar coordinates (for inductive grid)

\[
\frac{d}{dt} \theta_k = \omega_0 + c_1 \left(\frac{p_k^*}{\mathbf{v}^*} - \frac{p_k}{\| \mathbf{v}_k \|^2} \right) \| \mathbf{v}_k \| \approx 1 \quad \omega_0 + c_1 \left(p_k^* - p_k \right) \left(p - \omega \text{ droop} \right)
\]

\[
\frac{d}{dt} \| \mathbf{v}_k \| \| \mathbf{v}_k \| \approx 1 \quad c_1 \left(q_k^* - q_k \right) + c_2 \left(\mathbf{v}^* - \| \mathbf{v}_k \| \right) \left(q - \| \mathbf{v} \| \text{ droop} \right)
\]

3. **almost global asymptotic stability** with respect to pre-specified set-point if
Properties of virtual oscillator control

1. desired target dynamics can be realized via **fully decentralized control**

\[
\frac{d}{dt} v_k = \begin{bmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{bmatrix} v_k + c_1 \cdot R(\kappa) \left(\frac{1}{v^*} \begin{bmatrix} q^*_k & p^*_k \\ -p^*_k & q^*_k \end{bmatrix} v_k - i_{o,k} \right) + c_2 \cdot (u^* - ||v_k||^2) v_k
\]

- rotation at \(\omega_0 \)
- synchronization through physics
- local amplitude regulation

2. connection to **droop control** revealed in polar coordinates (for inductive grid)

\[
\frac{d}{dt} \theta_k = \omega_0 + c_1 \left(\frac{p^*_k}{v^*} - \frac{p_k}{||v_k||^2} \right) ||v_k|| \approx 1 \omega_0 + c_1 (p^*_k - p_k) (p - \omega \text{ droop})
\]

\[
\frac{d}{dt} ||v_k|| \approx 1 c_1 (q^*_k - q_k) + c_2 (u^* - ||v_k||) (q - ||v|| \text{ droop})
\]

3. **almost global asymptotic stability** with respect to pre-specified set-point if

- **power transfer** “small” compared to **network connectivity**
- **amplitude control** “slower” than **synchronization control**
Details on stability condition

- **power transfer** p_{jk} “small” compared to **network connectivity** λ_2
- **amplitude control** “slower” than **synchronization control**: $c_2/c_1 \ll 1$

E.g., for resistive grid:

$$\frac{1}{2} \lambda_2 > \max_k \sum_{j=1}^{n} \frac{1}{v^*^2} |p_{jk}| + \frac{c_2}{c_1} v^*$$

- algebraic connectivity
- power transfer
Details on stability condition

- **power transfer** p_{jk} “small” compared to **network connectivity** λ_2
- **amplitude control** “slower” than **synchronization control**: $c_2/c_1 \ll 1$

e.g., for resistive grid:

$$\frac{1}{2} \lambda_2 > \max_k \sum_{j=1}^{n} \frac{1}{v^*^2} |p_{jk}| + \frac{c_2}{c_1} v^*$$

- **conditions are exact** for two converters (or 0 set-points) & **approximately tight** in general
Details on stability condition

- **power transfer** p_{jk} “small” compared to network connectivity λ_2
- **amplitude control** “slower” than synchronization control: $c_2/c_1 \ll 1$

\[
\frac{1}{2} \lambda_2 > \max_k \sum_{j=1}^{n} \frac{1}{v^*^2} |p_{jk}| + \frac{c_2}{c_1} v^*
\]

e.g., for resistive grid:

- **conditions are exact** for two converters (or 0 set-points) & **approximately tight** in general
Details on stability condition

- **power transfer** p_{jk} “small” compared to **network connectivity** λ_2
- **amplitude control** “slower” than **synchronization control**: $c_2/c_1 \ll 1$

For resistive grid:

\[
\frac{1}{2} \lambda_2 > \max_k \sum_{j=1}^{n} \frac{1}{v^*^2} |p_{jk}| + \frac{c_2}{c_1} v^*
\]

- conditions are **exact** for two converters (or 0 set-points) & **approximately tight** in general
- proof relies on **Lyapunov arg’s**
Details on stability condition

- **Power transfer** p_{jk} “small” compared to network connectivity λ_2
- **Amplitude control** “slower” than synchronization control: $c_2/c_1 \ll 1$

- \[\frac{1}{2} \lambda_2 > \max_k \sum_{j=1}^n \frac{1}{v^*} \left| p_{jk} \right| + \frac{c_2}{c_1} v^* \]

 \text{e.g., for resistive grid:}

- λ_2\text{ algebraic connectivity}
- $\left| p_{jk} \right|$\text{ power transfer}

- \text{linear instability}
- \text{damping ratios}
- \text{certified stability region}

\[\begin{array}{cccc}
0 & 5 & 10 & 15 & 20 \\
10^{-5} & 10^{-4} & 10^{-3} & \\
\hline
3 \cdot 10^{-2} & 6 \cdot 10^{-2} & 8 \cdot 10^{-2} & \\
6 \cdot 10^{-2} & 6 \cdot 10^{-2} & 8 \cdot 10^{-2} & \\
8 \cdot 10^{-2} & 8 \cdot 10^{-2} & 8 \cdot 10^{-2} & \\
9.5 \cdot 10^{-2} & 9.5 \cdot 10^{-2} & 9.5 \cdot 10^{-2} & \\
\end{array} \]

- **Conditions are exact** for two converters (or 0 set-points) & approximately tight in general
- **Proof relies on Lyapunov arg’s**
- **Conditions can be extended** to line dynamics, LC filter, & inner loops \cite{Subotic, Gross, Colombino, & Dörfler,'19}
Experimental setup @ NREL
Experimental results

black start of inverter #1 under 500 W load (making use of almost global stability)

connecting inverter #2 while inverter #1 is regulating the grid under 500 W load

250 W to 750 W load transient with two inverters active

change of setpoint: \(p^* \) of inverter #2 updated from 250 W to 500 W
Detour: **duality & matching** of machines [Arghir & Dörfler,'19]

\[
\begin{align*}
\frac{d\theta}{dt} &= \omega \\
M \frac{d\omega}{dt} &= -D\omega + \tau_m + L_m i_r \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}^T \mathbf{i}_s \\
L_s \frac{d\mathbf{i}_s}{dt} &= -R_s \mathbf{i}_s + \mathbf{v}_g - L_m i_r \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \omega
\end{align*}
\]
Detour: **duality & matching** of machines
[Arghir & Döfler,'19]

\[
\begin{align*}
\frac{d\theta}{dt} &= \omega \\
M \frac{d\omega}{dt} &= -D\omega + \tau_m + Lmi_r \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}^\top i_s \\
L_s \frac{di_s}{dt} &= -R_s i_s + v_g - Lmi_r \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix} \omega \\
C_{dc} \frac{dv_{dc}}{dt} &= -G_{dc}v_{dc} + i_{dc} + m^\top i_f \\
L_f \frac{di_f}{dt} &= -R_f i_f + v_g - m v_{dc}
\end{align*}
\]
Detour: **duality & matching** of machines

[Arghir & Dörfler,'19]

\[
\begin{align*}
\frac{d\theta}{dt} &= \omega \\
M \frac{d\omega}{dt} &= -D\omega + \tau_m + L_m i_r \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}^\top i_s \\
L_s \frac{di_s}{dt} &= -R_s i_s + v_g - L_m i_r \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \omega
\end{align*}
\]

1. **modulation in polar coordinates:**

\[
m = m_{\text{ampl}} \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \quad \text{&} \quad \dot{\theta} = m_{\text{freq}}
\]

\[
\begin{align*}
\frac{d\theta}{dt} &= m_{\text{freq}} \\
C_{dc} \frac{dv_{dc}}{dt} &= -C_{dc} v_{dc} + i_{dc} + m_{\text{ampl}} \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}^\top i_f \\
L_f \frac{di_f}{dt} &= -R_f i_f + v_g - m_{\text{ampl}} \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} v_{dc}
\end{align*}
\]
Detour: **duality & matching** of machines

[Arghir & Dörfler,'19]

\[\frac{d\theta}{dt} = \omega \]

\[M \frac{d\omega}{dt} = -D\omega + \tau_m + L_m i_r \left[-\sin \theta \right]^\top i_s \]

\[L_s \frac{di_s}{dt} = -R_s i_s + v_g - L_m i_r \left[-\sin \theta \right] \omega \]

\[\frac{d\theta}{dt} = \eta \cdot v_{dc} \]

\[C_{dc} \frac{dv_{dc}}{dt} = -C_{dc} v_{dc} + i_{dc} + m_{ampl} \left[-\sin \theta \right]^\top i_f \]

\[L_f \frac{di_f}{dt} = -R_f i_f + v_g - m_{ampl} \left[-\sin \theta \right] v_{dc} \]

1. modulation in polar coordinates:

\[m = m_{ampl} \left[-\sin \theta \right] \quad \text{&} \quad \dot{\theta} = m_{freq} \]

2. matching: \(m_{freq} = \eta v_{dc} \) with \(\eta = \frac{\omega_{\text{ref}}}{v_{dc,\text{ref}}} \)
Detour: **duality & matching** of machines [Arghir & Dörlfer,'19]

\[
\frac{d\theta}{dt} = \omega \\
M \frac{d\omega}{dt} = -D\omega + \tau_m + L_m i_r \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}^\top i_s \\
L_s \frac{di_s}{dt} = -R_s i_s + v_g - L_m i_r \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix} \omega \\
C_{dc} \frac{dv_{dc}}{dt} = -C_{dc} v_{dc} + i_{dc} + m_{ampl} \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}^\top i_f \\
L_f \frac{di_f}{dt} = -R_f i_f + v_g - m_{ampl} \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix} v_{dc}
\]

1. modulation in polar coordinates:

\[m = m_{ampl} \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix} \quad \text{&} \quad \dot{\theta} = m_{freq} \]

2. matching: \(m_{freq} = \eta v_{dc} \) with \(\eta = \frac{\omega_{ref}}{v_{dc,ref}} \)

→ duality: \(C_{dc} \sim M \) is equivalent inertia
Detour: **duality & matching** of machines
[Arghir & Dörfler,'19]

\[
\frac{d\theta}{dt} = \omega \\
M \frac{d\omega}{dt} = -D\omega + \tau_m + L_m i_r \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}^\top i_s \\
L_s \frac{di_s}{dt} = -R_s i_s + v_g - L_m i_r \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \omega \\
\]

1. modulation in polar coordinates:

\[
m = m_{ampl} \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \quad \text{&} \quad \dot{\theta} = m_{freq}
\]

2. matching: \(m_{freq} = \eta v_{dc} \) with \(\eta = \frac{\omega_{ref}}{v_{dc,ref}} \)

\(\rightarrow \) duality: \(C_{dc} \sim M \) is equivalent inertia

theory & practice: **robust** duality \(\omega \sim v_{dc} \)
Comparison(s) of control strategies

Comparison of Virtual Oscillator and Droop Controlled Islanded Three-Phase Microgrids
Zhan Shi, Member, IEEE, Jiacheng Li, Student Member, IEEE, Hendra I. Nurdin, Senior Member, IEEE, and John E. Fletcher, Senior Member, IEEE

Similarities between Virtual Oscillator Controlled and Droop Controlled Three-Phase Inverters
Zhan Shi, Hendra I. Nurdin, John E. Fletcher, Jiacheng Li
School of Electrical Engineering and Telecommunications, UNSW Sydney, NSW, 2052, Australia
Email: zhan.shi@unsw.edu.au, h.nurdin@unsw.edu.au, john.fletcher@unsw.edu.au, jiacheng.li2@unsw.edu.au

Frequency Stability of Synchronous Machines and Grid-Forming Power Converters
Ali Tayyebi, Dominic Groß, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dörfler, Member, IEEE

Comparison of Virtual Oscillator and Droop Control
Brian Johnson, Miguel Rodriguez
Power Systems Engineering Center
National Renewable Energy Laboratory
Golden, CO 80401
Email: brian.johnson@nrel.gov, miguelrg@gmail.com

Comparative Transient Stability Assessment of Droop and Dispatchable Virtual Oscillator Controlled Grid-Connected Inverters
Hui Yu, Student Member, IEEE, M A Awal, Student Member, IEEE, Hao Tu, Student Member, IEEE, Iqbal Husain, Fellow, IEEE and Srdjan Lukic, Senior Member, IEEE

GRID-FORMING CONVERTERS – INEVITABILITY, CONTROL STRATEGIES AND CHALLENGES IN FUTURE GRIDS APPLICATION
Ali TAYYEBI
AIT and ETH Zürich – Austria
Friedrich DÖRFLER
ETH Zürich – Switzerland
Friedrich KUPZOG
Austrian Institute of Technology – Austria

Simulation-based study of novel control strategies for inverters in low-inertia system: grid-forming and grid-following
Author: Alessandro Crivellaro

Mathias Melby
Comparison of virtual oscillator control and droop control in an inverter-based stand-alone microgrid

Transient response comparison of virtual oscillator controlled and droop controlled three-phase inverters under load changes
Zhan Shi, Jiacheng Li, Hendra I. Nurdin, John E. Fletcher
School of Electrical Engineering and Telecommunications, UNSW Sydney, UNSW, NSW, 2052, Australia
Email: zhan.shi@unsw.edu.au
Comparison(s) of control strategies

Comparison of Virtual Oscillator and Droop Controlled Islanded Three-Phase Microgrids
Zhan Shi, Member, IEEE, Jiacheng Li, Student Member, IEEE, Hendra I. Nurdin, Senior Member, IEEE, and John E. Fletcher, Senior Member, IEEE

Similarities between Virtual Oscillator Controlled and Droop Controlled Three-Phase Inverters
Zhan Shi, Hendra I. Nurdin, John E. Fletcher, Jiacheng Li
School of Electrical Engineering and Telecommunications, UNSW Sydney, NSW, 2052, Australia
Email: zhan.shi@unsw.edu.au, h.nurdin@unsw.edu.au, john.fletcher@unsw.edu.au, jiacheng.li2@unsw.edu.au

Frequency Stability of Synchronous Machines and Grid-Forming Power Converters
Ali Tayyebi, Dominic Groß, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dörfler, Member, IEEE

Simulation-based study of novel control strategies for inverters in low-inertia system: grid-forming and grid-following
Author: Alessandro Crivellaro

Mathias Melby
Comparison of virtual oscillator control and droop control in an inverter-based stand-alone microgrid

Comparison of Virtual Oscillator and Droop Control
Brian Johnson, Miguel Rodriguez
Power Systems Engineering Center
National Renewable Energy Laboratory
Golden, CO 80401
Email: brian.johnson@nrel.gov, miguelrg@gmail.com

Mohit Sinha, Sairaj Dhople
Department of Electrical & Computer Engineering
University of Minnesota
Minneapolis, MN 55455
Email: [sinha052,sdhople]@umn.edu

Comparative Transient Stability Assessment of Droop and Dispatchable Virtual Oscillator Controlled Grid-Connected Inverters
Hui Yu, Student Member, IEEE, M A Awal, Student Member, IEEE, Hao Tu, Student Member, IEEE, Iqbal Husain, Fellow, IEEE and Srdjan Lukic, Senior Member, IEEE

GRID-FORMING CONVERTERS – INEVITABILITY, CONTROL STRATEGIES AND CHALLENGES IN FUTURE GRIDS APPLICATION
Ali TAVYEBI
AIT and ETH Zürich – Austria
Florian DÖRFLER
ETH Zürich – Switzerland
Friederich KUPZOG
Austrian Institute of Technology – Austria

Transient response comparison of virtual oscillator controlled and droop controlled three-phase inverters under load changes
Zhan Shi\(^1\), Jiacheng Li\(^2\), Hendra I. Nurdin\(^1\), John E. Fletcher\(^3\)
\(^1\)School of Electrical Engineering and Telecommunications, UNSW Sydney, UNSW, NSW, 2052, Australia
\(^2\)E-mail: zhan.shi@unsw.edu.au

► **identical steady-state & similar small-signal behavior** (after tuning)
Comparison(s) of control strategies

Comparison of Virtual Oscillator and Droop Controlled Islanded Three-Phase Microgrids
Zhan Shi, Member, IEEE, Jiacheng Li, Student Member, IEEE, Hendra I. Nurdin, Senior Member, IEEE, and John E. Fletcher, Senior Member, IEEE

Similarities between Virtual Oscillator Controlled and Droop Controlled Three-Phase Inverters
Zhan Shi, Hendra I. Nurdin, John E. Fletcher, Jiacheng Li
School of Electrical Engineering and Telecommunications, UNSW Sydney, NSW, 2052, Australia
Email: zhan.shi@unsw.edu.au, h.nurdin@unsw.edu.au, john.fletcher@unsw.edu.au, jiacheng.li2@unsw.edu.au

Frequency Stability of Synchronous Machines and Grid-Forming Power Converters
Ali Tayyebi, Dominic Groß, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dörfler, Member, IEEE

Comparison of Virtual Oscillator and Droop Control
Brian Johnson, Miguel Rodriguez
Power Systems Engineering Center
National Renewable Energy Laboratory
Golden, CO 80401
Email: brian.johnson@nrel.gov, miguelrg@gmail.com

Comparative Transient Stability Assessment of Droop and Dispatchable Virtual Oscillator Controlled Grid-Connected Inverters
Hui Yu, Student Member, IEEE, M A Awal, Student Member, IEEE, Hao Tu, Student Member, IEEE, Iqbal Husain, Fellow, IEEE and Srdjan Lukic, Senior Member, IEEE

GRID-FORMING CONVERTERS – INEVITABILITY, CONTROL STRATEGIES AND CHALLENGES IN FUTURE GRIDS APPLICATION
Ali TAVYEBI
AIT and ETH Zürich – Austria
Florian DÖRFLER
ETH Zürich – Switzerland
Friedrich KUPZOG
Austrian Institute of Technology – Austria

Mathias Melby
Comparison of virtual oscillator control and droop control in an inverter-based stand-alone microgrid

Simulation-based study of novel control strategies for inverters in low-inertia system: grid-forming and grid-following
Author: Alessandro Crivellaro

Transient response comparison of virtual oscillator controlled and droop controlled three-phase inverters under load changes
Zhan Shi1, Jiacheng Li2, Hendra I. Nurdin1, John E. Fletcher2
1School of Electrical Engineering and Telecommunications, UNSW Sydney, UNSW, NSW, 2052, Australia
2E-mail: zhan.shi@unsw.edu.au

► identical steady-state & similar small-signal behavior (after tuning)
► virtual synchronous machine has poor transients (converter ≠ flywheel)
Comparison(s) of control strategies

<table>
<thead>
<tr>
<th>Identification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Stability of Synchronous Machines and Grid-Forming Power Converters</td>
<td>Ali Tayyebi, Dominic Groß, Member, IEEE, Hendra I. Nurdin, Senior Member, IEEE, and John E. Fletcher, Senior Member, IEEE</td>
</tr>
<tr>
<td>Comparison of Virtual Oscillator and Droop Controlled Islanded Three-Phase Microgrids</td>
<td>Zhan Shi, Member, IEEE, Jiacheng Li, Student Member, IEEE, Hendra I. Nurdin, Senior Member, IEEE, and John E. Fletcher, Senior Member, IEEE</td>
</tr>
<tr>
<td>Comparative Transient Stability Assessment of Droop and Dispatchable Virtual Oscillator Controlled Grid-Connected Inverters</td>
<td>Hui Yu, Student Member, IEEE, M A Awal, Student Member, IEEE, Hao Tu, Student Member, IEEE, Iqbal Husain, Fellow, IEEE and Srdjan Lukic, Senior Member, IEEE</td>
</tr>
<tr>
<td>GRID-FORMING CONVERTERS – INEVITABILITY, CONTROL STRATEGIES AND CHALLENGES IN FUTURE GRIDS APPLICATION</td>
<td>Ali TAYYEBI, Florian DÖRFLER, and Friedrich KUPZOG</td>
</tr>
<tr>
<td>Simulation-based study of novel control strategies for inverters in low-inertia system: grid-forming and grid-following</td>
<td>Author: Alessandro Crivellaro</td>
</tr>
<tr>
<td>Mathias Melby</td>
<td>Comparison of virtual oscillator control and droop control in an inverter-based stand-alone microgrid</td>
</tr>
<tr>
<td>Transient response comparison of virtual oscillator controlled and droop controlled three-phase inverters under load changes</td>
<td>Zhan Shi(^1), Jiacheng Li(^2), Hendra I. Nurdin(^3), John E. Fletcher(^4)</td>
</tr>
</tbody>
</table>

- **identical steady-state & similar small-signal behavior** (after tuning)
- **virtual synchronous machine** has poor transients (converter ≠ flywheel)
- **VOC has best large-signal behavior**: stability, post-fault-response, . . .
Comparison(s) of control strategies

Comparison of Virtual Oscillator and Droop Controlled Islanded Three-Phase Microgrids
Zhan Shi, Member, IEEE, Jiacheng Li, Student Member, IEEE, Hendra I. Nurdin, Senior Member, IEEE, and John E. Fletcher, Senior Member, IEEE

Similarities between Virtual Oscillator Controlled and Droop Controlled Three-Phase Inverters
Zhan Shi, Hendra I. Nurdin, John E. Fletcher, Jiacheng Li
School of Electrical Engineering and Telecommunications, UNSW Sydney, NSW, 2052, Australia
Email: zhan.shi@unsw.edu.au, h.nurdin@unsw.edu.au, john.fletcher@unsw.edu.au, jiacheng.li2@unsw.edu.au

Frequency Stability of Synchronous Machines and Grid-Forming Power Converters
Ali Tayyebi, Dominic Groß, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dörfler, Member, IEEE

Comparison of Virtual Oscillator and Droop Control
Brian Johnson, Miguel Rodriguez
Power Systems Engineering Center
National Renewable Energy Laboratory
Golden, CO 80401
Email: brian.johnson@nrel.gov, miguelrg@gmail.com

Comparative Transient Stability Assessment of Droop and Dispatchable Virtual Oscillator Controlled Grid-Connected Inverters
Hui Yu, Student Member, IEEE, M A Awal, Student Member, IEEE, Hao Tu, Student Member, IEEE, Iqbal Husain, Fellow, IEEE and Srdjan Lukic, Senior Member, IEEE

Comparison of Virtual Oscillator and Droop Controlled Islanded Three-Phase Microgrids
Zhan Shi, Member, IEEE, Jiacheng Li, Student Member, IEEE, Hendra I. Nurdin, Senior Member, IEEE, and John E. Fletcher, Senior Member, IEEE

Comparison of Virtual Oscillator and Droop Control
Mohit Sinha, Sairaj Dhople
Department of Electrical & Computer Engineering
University of Minnesota
Minneapolis, MN 55455
Email: [sinhab052.sdhople]@umn.edu

Simulation-based study of novel control strategies for inverters in low-inertia system: grid-forming and grid-following
Author: Alessandro Crivellaro

Mathias Melby
Comparison of virtual oscillator control and droop control in an inverter-based stand-alone microgrid

Identical steady-state & similar small-signal behavior (after tuning)

Virtual synchronous machine has poor transients (converter ≠ flywheel)

VOC has best large-signal behavior: stability, post-fault-response, ...

Matching control $\omega \sim v_{dc}$ is most robust though with slow AC dynamics
Comparison(s) of control strategies

Comparison of Virtual Oscillator and Droop Controlled Islanded Three-Phase Microgrids

Zhan Shi, Member, IEEE, Jiacheng Li, Student Member, IEEE, Hendra I. Nurdin, Senior Member, IEEE, and John E. Fletcher, Member, IEEE

Similarities between Virtual Oscillator Controlled and Droop Controlled Three-Phase Inverters

Zhan Shi, Hendra I. Nurdin, John E. Fletcher, Jiacheng Li

School of Electrical Engineering and Telecommunications, UNSW Sydney, NSW, 2052, Australia

Email: zhan.shi@unsw.edu.au, h.nurdin@unsw.edu.au, john.fletcher@unsw.edu.au, jiacheng.li@unsw.edu.au

Frequency Stability of Synchronous Machines and Grid-Forming Power Converters

Ali Tayyebi, Dominic Groß, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dörlf, Member, IEEE

Simulation-based study of novel control strategies for inverters in low-inertia system: grid-forming and grid-following

Author: Alessandro Crivellaro

Comparison of Virtual Oscillator and Droop Control

Brian Johnson, Miguel Rodriguez

Power Systems Engineering Center

National Renewable Energy Laboratory

Golden, CO 80401

Email: brian.johnson@nrel.gov, miguelrg@gmail.com

Comparative Transient Stability Assessment of Droop and Dispatchable Virtual Oscillator Controlled Grid-Connected Inverters

Hui Yu, Student Member, IEEE, M A Awal, Student Member, IEEE, Hao Tu, Student Member, IEEE, Iqbal Husain, Fellow, IEEE and Srdjan Lukic, Senior Member, IEEE.

GRID-FORMING CONVERTERS – INEVITABILITY, CONTROL STRATEGIES AND CHALLENGES IN FUTURE GRIDS APPLICATION

Ali TAYYEBI

Friedrich KUPZOG

AIT and ETH Zürich – Austria

ETH Zürich – Switzerland

Austrian Institute of Technology – Austria

Transient response comparison of virtual oscillator controlled and droop controlled three-phase inverters under load changes

Zhan Shi1, Jiacheng Li1, Hendra I. Nurdin1, John E. Fletcher2

1School of Electrical Engineering and Telecommunications, UNSW Sydney, UNSW, NSW, 2052, Australia

2Email: zhan.shi@unsw.edu.au

► **identical steady-state & similar small-signal behavior** (after tuning)

► **virtual synchronous machine** has poor transients (converter ≠ flywheel)

► **VOC has best large-signal behavior**: stability, post-fault-response, . . .

► **matching control** $\omega \sim v_{dc}$ is most robust though with slow AC dynamics

► . . . comparison suggests **hybrid VOC + matching control** direction
Comparison of control strategies @AIT

- **all perform well** nominally & under minor disturbances
- **relative resilience**: matching > VOC > droop > virtual synchronous machine

Fig. 11: Normalized distribution of the RoCoF $|\dot{\omega}_i|/|\omega_i|$ of the synchronous machine frequency at node 1 for load disturbances 0.75 p.u. at node 7. For each load disturbance, the converters are able to react faster and more accurately than the SM and the remaining power imbalance affecting the turbine and converter power set-points are set to 0.6 and 0.75 p.u. respectively. Note that when the SM at node 1 is disconnected, the interaction of the fast GFC dynamics and slow SM dynamics contributes to the instability shown in Figure 15.

Fig. 12: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters

Ali Tayyebi, Dominic Groß, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dorfler, Member, IEEE

Fig. 14: DC current demand of the converter at node 2 (top) and its DC voltage (bottom) after a 0.75 p.u. load disturbance (top) and 0.9 p.u. load disturbance (bottom). The GFCs quickly recover the matching controlled converter v_{dc} when the test system contains one GFC and two SMs, whereas the SM-droop control (VOC) uses GFCs to mimic the synchronizing behavior of the slow synchronous machine and its increased post-event steady-state power injection for several milliseconds. However, due to the comparably slow response, the stability of the system is presented, 3) we explore the behavior of the system when disconnecting the synchronous machine at the base load, is no longer available. Second, the stabilizing mechanism present in SMs and is a widely accepted baseline control (VOC) uses GFCs to mimic the synchronizing behavior of the slow synchronous machine and its increased post-event steady-state power injection for several milliseconds. However, due to the comparably slow response, the stability of the system is presented, 3) we explore the behavior of the system when disconnecting the synchronous machine at the base load, is no longer available. Second, the stabilizing mechanism present in SMs and is a widely accepted baseline

Fig. 15: Comparison of control strategies @AIT of Electrical and Computer Engineering, University of Wisconsin-Madison, Control Laboratory, ETH Zürich, Switzerland. D. Groß is with the Department of Electrical and Computer Engineering, University of Wisconsin-Madison.

Funds, and by the European Unions Horizon 2020 research and innovation competence unit of the Austrian Institute for Technology (AIT), ETH Zürich-

<table>
<thead>
<tr>
<th>comparison</th>
<th>of</th>
<th>strategy</th>
<th>@AIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of control strategies @AIT

- **all perform well** nominally & under minor disturbances

- **relative resilience**: matching > VOC > droop > virtual synchronous machine

→ it is a very poor strategy for a converter to emulate a flywheel
Comparison of control strategies @AIT

- **all perform well** nominally & under minor disturbances
- **relative resilience**: matching > VOC > droop > virtual synchronous machine
 → it is a very poor strategy for a converter to emulate a flywheel
- promising **hybrid control**
 directions: VOC + matching
Conclusions

Summary

• dispatchable virtual oscillator control
• theoretic analysis & experiments
Conclusions

Summary
- dispatchable virtual oscillator control
- theoretic analysis & experiments

Ongoing & future work
- robustness & compatibility with legacy system
- promising **hybrid VOC + matching control**
Conclusions

Summary

• dispatchable virtual oscillator control
• theoretic analysis & experiments

Ongoing & future work

• robustness & compatibility with legacy system
• promising hybrid VOC + matching control

Hybrid Angle Control and Almost Global Stability of Grid-Forming Power Converters

Ali Tayyebi, Adolfo Anta, and Florian Dörfler
Conclusions

Summary

• dispatchable virtual oscillator control
• theoretic analysis & experiments

Ongoing & future work

• robustness & compatibility with legacy system
• promising hybrid VOC + matching control

Hybrid Angle Control and Almost Global Stability of Grid-Forming Power Converters

Ali Tayyebi, Adolfo Anta, and Florian Dörfler

Main references

→ many other articles on my website (link) under keyword “power electronics control”