#### Distributed Monitoring and Control of Load Tap Changer Dynamics

# Bai Cui, Ahmed Zamzam, Guido Cavraro, and Andrey Bernstein NREL

#### Workshop on Autonomous Energy Systems August 2020

Cui et al. (NREL)

## Introduction

#### Resilience (GMLC report)

The ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions.

- Understanding the stability of networked LTCs.
  - Stable equilibrium point.
  - Region of attraction characterization.
- Designing algorithm for distributed monitoring and control.



# Load Tap Changer (LTC)

Voltage regulation device that controls the voltage of the Medium Voltage (MV) side by changing the transformer ratio r.



$$r_{k+1} = \begin{cases} r_k - \Delta r & \text{if } V_2 < V_2^0 - d \text{ and } r_k > r^m \\ r_k & \text{otherwise} \end{cases}$$

Continuous approximation:

$$\dot{r} = \frac{1}{T_c} (V_2 - V_2^0) \qquad r^{\min} \le r \le r^{\max}$$

### Instability Mechanism



イロト 不良 とくほとくほう

## Table of Contents

1 Stability Analysis and ROA Characterization

2 Stability Monitoring and Control

Explicit ROA Characterization

#### Simulation Results

#### 5 Conclusions

## Dynamical System Model

The dynamic of networked LTC is governed by the following equation:

$$\dot{r}_i = rac{1}{T_i}(V_{s,i}(\mathbf{r}) - V_{0,i}), \quad \forall i \in \mathcal{V}_L$$

where

$$\boldsymbol{V}_{s}=-\boldsymbol{B}_{LL}^{-1}[\boldsymbol{r}]^{-1}\boldsymbol{B}_{LG}\boldsymbol{V}_{G}.$$

## Dynamical System Model

The dynamic of networked LTC is governed by the following equation:

$$\dot{r}_i = \frac{1}{T_i} (V_{s,i}(\mathbf{r}) - V_{0,i}), \quad \forall i \in \mathcal{V}_L$$

where

$$\boldsymbol{V}_{s}=-\boldsymbol{B}_{LL}^{-1}[\boldsymbol{r}]^{-1}\boldsymbol{B}_{LG}\boldsymbol{V}_{G}.$$

The set of equilibria of the dynamical system is

$$\mathcal{M} = \{ \boldsymbol{r} \in \mathbb{R}_{>0}^n : \dot{r}_i(\boldsymbol{r}) = 0, \forall i \in \mathcal{V}_L \}.$$

#### Dynamical System Model

The dynamic of networked LTC is governed by the following equation:

$$\dot{r}_i = \frac{1}{T_i} (V_{s,i}(\mathbf{r}) - V_{0,i}), \quad \forall i \in \mathcal{V}_L$$

where

$$\boldsymbol{V}_{s}=-\boldsymbol{B}_{LL}^{-1}[\boldsymbol{r}]^{-1}\boldsymbol{B}_{LG}\boldsymbol{V}_{G}.$$

The set of equilibria of the dynamical system is

$$\mathcal{M} = \left\{ \boldsymbol{r} \in \mathbb{R}_{>0}^{n} : \dot{r}_{i}(\boldsymbol{r}) = 0, \forall i \in \mathcal{V}_{L} \right\}.$$

Define the set  $\mathcal{P}$  as

$$\mathcal{P} = \{ \boldsymbol{r} \in \mathbb{R}_{>0}^n : \dot{r}_i(\boldsymbol{r}) \geq 0, \forall i \in \mathcal{V}_L \}.$$

Note that  $\mathcal{M}$  lies on the boundary of  $\mathcal{P}$ .

# Stability Analysis and ROA Characterization

メロト メポト メヨト メヨト

## Stable Equilibrium

Equilibria are the intersection of quadratic hypersurfaces. Two things are known:

- A maximum equilibrium exists;
- It is asymptotically stable.



|           | (NUMPER ) |
|-----------|-----------|
| Curet al. | NKEL      |
|           |           |

イロト イヨト イヨト イ

## Region of Attraction



Theorem (Liu & Vu, 89') The set  $\mathcal{A}(\mathbf{r}^*) := {\mathbf{r} : \mathbf{r} \ge \mathbf{r}^*}$  is a region of attraction of  $\alpha$  if  $\mathbf{r}^* \in \mathcal{P}$  and  $\alpha$  is the only equilibrium point in  $\mathcal{A}(\mathbf{r}^*)$ .

イロト イヨト イヨト イヨ

## Region of Attraction



Theorem (Liu & Vu, 89') The set  $\mathcal{A}(\mathbf{r}^*) := {\mathbf{r} : \mathbf{r} \ge \mathbf{r}^*}$  is a region of attraction of  $\alpha$  if  $\mathbf{r}^* \in \mathcal{P}$  and  $\alpha$  is the only equilibrium point in  $\mathcal{A}(\mathbf{r}^*)$ .

< □ > < □ > < □ > < □ > < □ >

#### Computational considerations

- Efficient characterization of  $\mathcal{P}$ ?
- How to ensure no other equilibria in  $\mathcal{A}(\mathbf{r}^*)$ ?

## Region of Attraction



#### Observations from the figure

- **()** The set  $\mathcal{A}(\mathbf{r})$  contains exactly one equilibrium point for all  $\mathbf{r} \in int(\mathcal{P})$ .
- 2 All equilibria other than  $\alpha$  are unstable.
- $\bigcirc \mathcal{P}$  is convex.

|           | (NUMPER ) |
|-----------|-----------|
| Curet al. | INKEL     |
|           |           |

・ロト ・日 ・ ・ ヨト ・

## Main Results



#### Proposition

All equilibria other than  $\alpha$  are unstable.

#### Proposition

There is a unique equilibrium point in  $\mathcal{A}(\mathbf{r}^*) = \{\mathbf{r} : \mathbf{r} \ge \mathbf{r}^*\}$  for any  $\mathbf{r}^* \in \mathcal{P} \setminus \mathcal{M}$ .

#### Corollary

The set  $\mathcal{A}(\mathbf{r}^*)$  is a region of attraction of  $\alpha$  for any  $\mathbf{r}^* \in \mathcal{P}$ .

Cui et al. (NREL)

# Stability Monitoring and Control

イロト 不良 とくほとくほう

## Stability Assessment

A tap position vector  $r_0$  is inside the region of attraction if there is  $r^*$ ,  $V^*$  such that

$$\begin{pmatrix} \tilde{\boldsymbol{B}}_{LL} + [\boldsymbol{b}_s][\boldsymbol{r}^*]^{-2} \end{pmatrix} \boldsymbol{V}^* = \boldsymbol{h}, \\ [\boldsymbol{r}^*]^{-1} \boldsymbol{V}^* \ge \boldsymbol{V}_0, \\ 0 \le \boldsymbol{r}^* \le \boldsymbol{r}_0. \end{pmatrix} \xrightarrow{\boldsymbol{u}^* = [\boldsymbol{r}^*]^{-2} \boldsymbol{V}^*} \begin{array}{c} \tilde{\boldsymbol{B}}_{LL} \boldsymbol{V}^* + [\boldsymbol{b}_s] \boldsymbol{u}^* = \boldsymbol{h}, \\ [\boldsymbol{V}^*] \boldsymbol{u}^* \ge [\boldsymbol{V}_0] \boldsymbol{V}_0, \\ [\boldsymbol{u}^*]^{-1} \boldsymbol{V}^* \le [\boldsymbol{r}_0] \boldsymbol{r}_0, \\ \boldsymbol{V} \ge 0. \end{array}$$

Convex optimization formulation

$$\begin{split} \min_{\boldsymbol{u},\boldsymbol{V}\geq 0} & \|\tilde{\boldsymbol{B}}_{LL}\boldsymbol{V}+[\boldsymbol{b}_s]\boldsymbol{u}-\boldsymbol{h}\|^2 \\ \text{s.t.} & [\boldsymbol{V}]\boldsymbol{u}\geq [\boldsymbol{V}_0]\boldsymbol{V}_0, \\ & [\boldsymbol{u}]^{-1}\boldsymbol{V}\leq [\boldsymbol{r}_0]\boldsymbol{r}_0. \end{split}$$

| · · · · · | (NUMPER ) |
|-----------|-----------|
| (metal (  | INREL 1   |
| curceun j | (         |

Minimum change in load such that the tap position vector  $\mathbf{r}_0$  is in  $\mathcal{P}$ :





< □ > < □ > < □ > < □ > < □ >

• Nonconvex: only admits a convex inner approximation.

|          | (NUMPER ) |
|----------|-----------|
| Curetal. | INKEL)    |
|          |           |

## Instability Mitigation: Convex Inner Approximation

$$\begin{split} \min_{\boldsymbol{V} \geq 0, \boldsymbol{u}, \boldsymbol{d}} & \|\boldsymbol{d}\|_2^2 \\ \text{s.t.} & \tilde{\boldsymbol{B}}_{LL} \boldsymbol{V} + [\boldsymbol{b}_s] \boldsymbol{u} - [\boldsymbol{d}] \boldsymbol{u} = \boldsymbol{h} \\ & [\boldsymbol{V}] \boldsymbol{u} \geq [\boldsymbol{V}_0] \boldsymbol{V}_0, \\ & [\boldsymbol{u}]^{-1} \boldsymbol{V} \leq [\boldsymbol{r}_0] \boldsymbol{r}_0, \\ & 0 \leq \boldsymbol{d} \leq \boldsymbol{b}_s. \end{split}$$

≣ ► Ξ ∽ ⊂ ભ August 2020 16/32

イロト 不良 とくほとくほう

# Instability Mitigation: Convex Inner Approximation

$$\begin{split} \min_{\substack{\ell \geq 0, u, d}} & \|d\|_2^2 \\ \text{s.t.} & \tilde{B}_{LL} V + [b_s] u - [d] u = h \\ & [V] u \geq [V_0] V_0, \\ & [u]^{-1} V \leq [r_0] r_0, \\ & 0 \leq d \leq b_s. \end{split}$$

$$\begin{split} \min_{\boldsymbol{V} \geq 0, \boldsymbol{u}, \boldsymbol{d}} & \|\boldsymbol{d}\|_2^2 \\ \text{s.t.} & \tilde{\boldsymbol{B}}_{LL} \boldsymbol{V} + [\boldsymbol{b}_s] \boldsymbol{u} - \boldsymbol{d} = \boldsymbol{h} \\ & [\boldsymbol{V}] \boldsymbol{u} \geq [\boldsymbol{V}_0] \boldsymbol{V}_0, \\ & [\boldsymbol{u}]^{-1} \boldsymbol{V} \leq [\boldsymbol{r}_0] \boldsymbol{r}_0, \\ & 0 \leq \boldsymbol{d} \leq [\boldsymbol{b}_s] \boldsymbol{u} \end{split}$$

| ~ . |       |     | <b>D</b> | _ |    |
|-----|-------|-----|----------|---|----|
|     | et al |     | ы.       | _ | ۱. |
| Cui | CL ai | - 1 | <br>•••  | _ |    |
|     |       |     |          |   |    |

▲□▶ ▲圖▶ ▲国▶ ▲国▶

#### Stability Monitoring and Control

• Both monitoring and mitigation problems can be formulated as a single problem:

$$\begin{split} \min_{\mathbf{b}, \mathbf{V} \geq 0} & \| \tilde{\boldsymbol{B}}_{LL} \boldsymbol{V} + [\boldsymbol{b}_s] \boldsymbol{u} - \boldsymbol{h} \|^2 \\ \text{s.t.} & \tilde{\boldsymbol{B}}_{LL} \boldsymbol{V} \leq \boldsymbol{h} \\ & [\boldsymbol{V}] \boldsymbol{u} \geq [\boldsymbol{V}_0] \boldsymbol{V}_0, \\ & [\boldsymbol{u}]^{-1} \boldsymbol{V} \leq [\boldsymbol{r}_0] \boldsymbol{r}_0. \end{split}$$

- Stable if optimal cost = 0.
- Can recover needed Q support otherwise.

| <u> </u>   |      | A 1 1 1 | _ |
|------------|------|---------|---|
| ( III of - | al ( | NR      |   |
| Curces     |      | 1.41.   |   |
|            |      |         |   |

#### ADMM-based Distributed Implementation

$$\begin{array}{ll} \min_{\mathbf{x},\mathbf{z}} & \sum_{i=1}^{n_s} f_i(\mathbf{x}^i) \\ \text{s.t.} & \mathbf{x}^i \in \mathcal{X}_i, \\ & W^{ij} = z^j, V_j = z^j, \end{array} \qquad i = 1, \dots, n_s, \ j \in \mathcal{N}_i^a \end{array}$$

- n<sub>s</sub>: number of connected subgraphs (agents)
- $\mathcal{N}_i$ : the bus set of the *i*th agent;
- $\mathcal{N}_i^a$ : the set of buses adjacent to the *i*th agent;
- $\mathbf{x}^{i} = (\{V_{j}\}_{j \in \mathcal{N}_{i}}, \{u_{j}\}_{j \in \mathcal{N}_{i}}, \{W^{ij}\}_{j \in \mathcal{N}_{i}^{a}})$  collect the optimization variables of agent i

The corresponding augmented Lagrangian with penalty parameter  $\rho$  is

$$\begin{split} \mathcal{L}_{\rho}(\pmb{x}, \pmb{z}, \pmb{\lambda}, \pmb{\mu}) &= \sum_{i=1}^{n_{s}} f_{i}(\pmb{x}^{i}) + \sum_{i \in \mathcal{B}} \left( \lambda^{i} (V_{i} - z^{i}) + \frac{\rho}{2} (V_{i} - z^{i})^{2} \right) \\ &+ \sum_{i=1}^{n_{s}} \sum_{j \in \mathcal{N}_{i}^{a}} \left( \mu^{ij} (W^{ij} - z^{i}) + \frac{\rho}{2} (W^{ij} - z^{j})^{2} \right). \end{split}$$

#### ADMM-based Distributed Implementation

ADMM performs the following iterative updates:

$$\begin{aligned} \mathbf{x}_{k+1}^{i} &= \arg\min_{\mathbf{x}^{i} \in \mathcal{X}_{i}} \left\{ f_{i}(\mathbf{x}^{i}) + \sum_{j \in \mathcal{B} \cup \mathcal{N}_{i}} \left( \lambda_{k}^{j} V_{j} + \frac{\rho}{2} (V_{j} - z_{k}^{j})^{2} \right) \\ &+ \sum_{j \in \mathcal{N}_{i}^{a}} \left( \mu_{k}^{ij} W^{ij} + \frac{\rho}{2} (W^{ij} - z_{k}^{j})^{2} \right) \right\}, \qquad \forall i \in [n_{s}] \\ z_{k+1}^{i} &= \arg\min\left\{ \sum_{j:i \in \mathcal{N}_{j}^{a}} \left( -\mu_{k}^{ji} z^{i} + \frac{\rho}{2} (W_{k+1}^{ji} - z^{i})^{2} \right) - \lambda_{k}^{i} z^{i} + \frac{\rho}{2} (V_{i,k+1} - z^{i})^{2} \right\}, \\ \lambda_{k+1}^{i} &= \lambda_{k}^{i} + \rho \left( V_{i,k+1} - z_{k+1}^{i} \right), \qquad \forall i \in \mathcal{B} \\ \mu_{k+1}^{ij} &= \mu_{k}^{ij} + \rho \left( W_{k+1}^{ij} - z_{k+1}^{j} \right), \qquad \forall i, \forall j \in \mathcal{N}_{i}^{a} \end{aligned}$$

## ADMM-based Distributed Implementation

Initialization: Multipliers  $\mu^{(0)}, \lambda^{(0)}$ .

repeat

[S1] Each agent *i* receives the multipliers and voltage estimates from its neighbors, update local variables, and broadcasts the resulting voltage to its neighbors.

[S2] Each agent i uses its updated voltages, multipliers, and received bus voltages and multipliers to compute its voltage estimates and broadcasts them to its neighbors.

[S3] Each agent *i* updates its multipliers using its own updated bus voltages, estimated voltages, as well as received voltage estimates.

until Primal & dual residuals are small

Cui et al. (NREL)



# Explicit ROA Characterization

イロト 不良 とくほとくほう

#### **ROA** Characterization

Finding minimum tap position in  $\mathcal{P}$  along certain direction:

$$\begin{array}{ll} \min_{\boldsymbol{V},\boldsymbol{r}} & \boldsymbol{c}^{\top}\boldsymbol{r} \\ \text{s.t.} & \left(\tilde{\boldsymbol{B}}_{LL} + [\boldsymbol{b}_{s}][\boldsymbol{r}]^{-2}\right)\boldsymbol{V} = \boldsymbol{h} & (\text{Flow constraint}) \\ & \boldsymbol{V} \geq [\boldsymbol{r}]\boldsymbol{V}_{0} & (\text{Secondary side voltage requirement}) \\ & \boldsymbol{r} \geq \mathbb{0}. \end{array}$$

Each direction c determines a (possibly distinct) inner approximation  $\mathcal{A}(r^*(c))$  of the true ROA, and their union characterizes a maximal inner approximation of the ROA:

$$\mathcal{A}_{\cup} := \bigcup_{\substack{\boldsymbol{c} \geq 0 \\ \boldsymbol{c}^{\top} \mathbb{1} = 1}} \mathcal{A}(\boldsymbol{r}^{*}(\boldsymbol{c})).$$

Cui et al. (NREL)

## **ROA Characterization**



Figure: ROA Characterizations for IEEE 39-bus system before and after line tripping.

Figure: LTC dynamics at bus 8 before and after line tripping.

イロト イヨト イヨト イヨ

30

## Ellipsoidal Inner Approximation of the ROA

$$\begin{pmatrix} \tilde{\boldsymbol{B}}_{LL} + [\boldsymbol{b}_s][\boldsymbol{r}]^{-2} \end{pmatrix} \boldsymbol{V} = \boldsymbol{h}, \qquad \xrightarrow{\boldsymbol{u} = [\boldsymbol{r}]^{-2} \boldsymbol{V}} \qquad \qquad \tilde{\boldsymbol{B}}_{LL} \boldsymbol{V} + [\boldsymbol{b}_s] \boldsymbol{u} = \boldsymbol{h}, \\ [\boldsymbol{r}]^{-1} \boldsymbol{V} \ge \boldsymbol{V}_0. \qquad \qquad [\boldsymbol{V}] \boldsymbol{u} \ge [\boldsymbol{V}_0] \boldsymbol{V}_0.$$

The problem of finding the maximum volume inscribed ellipsoid in V-space can be cast as

$$\begin{array}{ll} \max\limits_{\boldsymbol{C} \succeq 0, \boldsymbol{\alpha}} & \log \det \boldsymbol{C} \\ \text{s.t.} & [\boldsymbol{C}\boldsymbol{\xi} + \boldsymbol{\alpha}] \boldsymbol{u}(\boldsymbol{\xi}) \geq [\boldsymbol{V}_0] \boldsymbol{V}_0 & \forall \|\boldsymbol{\xi}\|_2 \leq 1 \\ & \boldsymbol{u}(\boldsymbol{\xi}) = [\boldsymbol{b}_{\mathrm{s}}]^{-1} \left(\boldsymbol{h} - \tilde{\boldsymbol{B}}_{LL}(\boldsymbol{C}\boldsymbol{\xi} + \boldsymbol{\alpha})\right) & \forall \|\boldsymbol{\xi}\|_2 \leq 1 \end{array}$$

Quite surprisingly, each of the robust SOC constraint above can be reformulated as an SDP with LMIs of dimension  $2(n-1) \times 2(n-1)$  so the above problem admits a tractable reformulation.

| <u> </u> |        | (NIDEL) |
|----------|--------|---------|
| 6 111    | et al  |         |
| Cui      | CL al. |         |
|          |        |         |

#### Ellipoidal Inner Approximation of the ROA

Ellipsoid in V-space:

$$\{V = C\xi + \alpha, \|\xi\|_2 \le 1\}.$$

With  $\tilde{B}_{LL}V + [b_s]u = h$ , ellipsoid in *u*-space is

$$\{ u = D\xi + \beta, \|\xi\|_2 \le 1 \}.$$

Then the Hadamard division of vectors in the two ellipsoids parametrized by the same  $\boldsymbol{\xi}$  gives rise to a subset of  $\mathcal{P}^2 := \{ \boldsymbol{r} : \sqrt{\boldsymbol{r}} \in \mathcal{P} \}$  that is linear-fractional, which is

$$\mathcal{C} := \big\{ \tilde{\boldsymbol{r}} \in \mathbb{R}_{>0}^n : \ \tilde{\boldsymbol{r}}_i = (\boldsymbol{c}_i^\top \boldsymbol{\xi} + \alpha_i) / (\boldsymbol{d}_i^\top \boldsymbol{\xi} + \beta_i), \|\boldsymbol{\xi}\|_2 \leq 1, \ \forall i \in \mathcal{V}_L \big\}.$$

We can rewrite C as an SOC set by introducing new variables: let  $\mathbf{y}_i = \boldsymbol{\xi}/(\mathbf{d}_i^{\top}\boldsymbol{\xi} + \beta_i)$  and  $t_i = 1/(\mathbf{d}_i^{\top}\boldsymbol{\xi} + \beta_i)$ , then C can be rewritten as

$$\mathcal{C} = \left\{ \tilde{r} \in \mathbb{R}_{>0}^n : \ \tilde{r}_i = \boldsymbol{c}_i^\top \boldsymbol{y}_i + \alpha_i t_i, \boldsymbol{d}_i^\top \boldsymbol{y}_i + \beta_i t_i = 1, \|\boldsymbol{y}_i\|_2 \le t_i, \forall i \in \mathcal{V}_L \right\} \Big|$$

イロン イ団 とく ヨン イヨン

## Simulation Results

・ロト ・四ト ・ヨト ・ヨト

#### Simulation Results: Test System

IEEE 39-bus system (decoupled Q-V model).



Figure: ROA Characterizations for IEEE 39-bus system before and after line tripping.

Four scenarios:

- Steady-state (tap position in  $Q^{\text{post}}$ ) after line (8,9) outage;
- Tap position r\* after line (8,9) outage;
- Tap position r\* after line (8,9) outage with additional load;
- Tap position r\* after line (3,4) outage with additional load.

イロト イヨト イヨト イヨ

## Simulation Results: Convergence Rate

- Partition 39-bus system into three subsystems.
- Stopping criterion: relative error less than  $10^{-4}$ .



Figure: Dynamics at bus 8 (scenario 3).

・ロト ・日下・ ・ ヨト・

| Sconaria | Optimal              | # of        | T:ma (ana )      | Time per |
|----------|----------------------|-------------|------------------|----------|
| Scenario | objective iterations | Time (sec.) | subsystem (sec.) |          |
| 1        | 0                    | 39          | 33.01            | 11.00    |
| 2        | 4.1870               | 89          | 73.52            | 24.51    |
| 3        | 12.3824              | 83          | 65.35            | 21.78    |
| 4        | 20.4829              | 113         | 109.72           | 36.57    |

Table: Simulation Results on Convergence Rate

## Simulation Results: Reactive Power Support

| Scenario | Total Load | Total support | Percentage |
|----------|------------|---------------|------------|
| 1        | 55.10      | 0             | 0%         |
| 2        | 55.10      | 1.93          | 3.50%      |
| 3        | 58.004     | 3.31          | 5.70%      |
| 4        | 58.004     | 4.68          | 8.07%      |

Table: Needed Reactive Power Support.



#### Extension to Full Power Flow Model



Figure: PV curve at bus 8.



Figure: Dynamics at bus 8.

イロト イロト イヨト イヨト

#### Extension to Full Power Flow Model



Figure: PV curve at bus 8.



#### Stability Monitoring and Control Problem

$$\begin{array}{ll} \min & \|\boldsymbol{Q}\|^2 \\ \text{s.t.} & P_i(\boldsymbol{c}_{ii}, \boldsymbol{c}_{ij}, \boldsymbol{s}_{ij}) = -\boldsymbol{u}_{s,i}\boldsymbol{g}_{s,i} & \forall i \in \mathcal{N}, (i,j) \in \\ & Q_i(\boldsymbol{c}_{ii}, \boldsymbol{c}_{ij}, \boldsymbol{s}_{ij}) = -\boldsymbol{u}_{s,i}\boldsymbol{b}_{s,i} + \boldsymbol{Q}_i & \forall i \in \mathcal{N}, (i,j) \in \\ & \boldsymbol{c}_{ij}^2 + \boldsymbol{s}_{ij}^2 \leq \boldsymbol{c}_{ii}\boldsymbol{c}_{jj}, & \forall (i,j) \in \mathcal{E} \\ & \boldsymbol{u}_i \geq V_{0,i}^2, r_{0,i}^2 \boldsymbol{u}_i \geq \boldsymbol{c}_{ii}, & \forall i \in \mathcal{N}. \end{array}$$

E E

## Conclusions

#### Summary

- New result on stability and ROA characterization of LTC dynamics
- Optimization formulations for inner approximation of ROA
- Convex formulations for stability monitoring and instability mitigation of LTC dynamics
- ADMM-based distributed implementation

#### Ongoing/future work

- Extension to full power flow model
- Deal with system uncertainties
- Real-time implementation

Thank you! Questions?

・ロト ・四ト ・ヨト ・ヨト