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Introduction

Resilience (GMLC report)

The ability to prepare for and adapt to changing
conditions and withstand and recover rapidly from
disruptions.

Understanding the stability of networked LTCs.

I Stable equilibrium point.
I Region of attraction characterization.

Designing algorithm for distributed monitoring
and control.

Cui et al. (NREL) LTC dynamics August 2020 2 / 32



Load Tap Changer (LTC)

Voltage regulation device that controls the voltage of the Medium Voltage (MV) side by
changing the transformer ratio r .

rk+1 =


rk + ∆r if V2 > V 0

2 + d and rk < rmax

rk −∆r if V2 < V 0
2 − d and rk > rmin

rk otherwise

Continuous approximation:

ṙ =
1

Tc
(V2 − V 0

2 ) rmin ≤ r ≤ rmax
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Instability Mechanism
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Dynamical System Model

The dynamic of networked LTC is governed by the following equation:

ṙi =
1

Ti
(Vs,i (r)− V0,i ), ∀i ∈ VL

where

Vs = −B−1
LL [r ]−1BLGVG .

The set of equilibria of the dynamical system is

M = {r ∈ Rn
>0 : ṙi (r) = 0, ∀i ∈ VL} .

Define the set P as

P = {r ∈ Rn
>0 : ṙi (r) ≥ 0, ∀i ∈ VL} .

Note that M lies on the boundary of P.
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Stability Analysis and ROA Characterization
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Stable Equilibrium

Equilibria are the intersection of quadratic hypersurfaces. Two things are known:

A maximum equilibrium exists;

It is asymptotically stable.

r1

r2

Stable Eq.

P
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Region of Attraction

r1

r2

α

e2

e1

e3

P

Theorem (Liu & Vu, 89’)

The set A(r∗) := {r : r ≥ r∗} is a region of attraction of α if r∗ ∈ P and α is the only
equilibrium point in A(r∗).
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Region of Attraction

r1

r2

α

e2

e1

e3

P

Theorem (Liu & Vu, 89’)

The set A(r∗) := {r : r ≥ r∗} is a region of

attraction of α if r∗ ∈ P and α is the only

equilibrium point in A(r∗) .

Computational considerations

Efficient characterization of P?

How to ensure no other equilibria in A(r∗)?
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Region of Attraction

r1

r2

α

e2

e1

e3

P

Observations from the figure

1 The set A(r) contains exactly one equilibrium point for all r ∈ int(P).

2 All equilibria other than α are unstable.

3 P is convex.
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Main Results

r1

r2

α

e2

e1

e3

P

Proposition

All equilibria other than α are unstable.

Proposition

There is a unique equilibrium point in A(r∗) = {r : r ≥ r∗} for any r∗ ∈ P \M.

Corollary

The set A(r∗) is a region of attraction of α for any r∗ ∈ P.
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Stability Monitoring and Control
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Stability Assessment

A tap position vector r0 is inside the region of attraction if there is r∗, V ∗ such that

(
B̃LL + [bs ][r∗]−2

)
V ∗ = h,

[r∗]−1V ∗ ≥ V0,

0 ≤ r∗ ≤ r0.

u∗=[r∗]−2V∗−−−−−−−−→
B̃LLV ∗ + [bs ]u∗ = h,
[V ∗]u∗ ≥ [V0]V0,

[u∗]−1V ∗ ≤ [r0]r0,
V ≥ 0.

Convex optimization formulation

min
u,V≥0

‖B̃LLV + [bs ]u − h‖2

s.t. [V ]u ≥ [V0]V0,

[u]−1V ≤ [r0]r0.
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Instability Mitigation

Minimum change in load such that the tap position vector r0 is in P:

r1

r2

P

r0

Minimum effort to guarantee resilience

min
V ,r,d

‖d‖2

s.t.
(
B̃LL + [bs − d ][r ]−2

)
V = h

[r ]−1V ≥ V0

0 ≤ r ≤ r0
0 ≤ d ≤ bs .

Nonconvex: only admits a convex inner approximation.
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Instability Mitigation: Convex Inner Approximation

min
V≥0,u,d

‖d‖22

s.t. B̃LLV + [bs ]u − [d ]u = h
[V ]u ≥ [V0]V0,

[u]−1V ≤ [r0]r0,
0 ≤ d ≤ bs .

min
V≥0,u,d

‖d‖22

s.t. B̃LLV + [bs ]u − d = h
[V ]u ≥ [V0]V0,

[u]−1V ≤ [r0]r0,
0 ≤ d ≤ [bs ]u
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Stability Monitoring and Control

Both monitoring and mitigation problems can be formulated as a single problem:

min
u,V≥0

‖B̃LLV + [bs ]u − h‖2

s.t. B̃LLV ≤ h
[V ]u ≥ [V0]V0,

[u]−1V ≤ [r0]r0.

Stable if optimal cost = 0.

Can recover needed Q support otherwise.
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ADMM-based Distributed Implementation

min
x,z

ns∑
i=1

fi (x i )

s.t. x i ∈ Xi , i = 1, . . . , ns

W ij = z j ,Vj = z j , i = 1, . . . , ns , j ∈ N a
i

ns : number of connected subgraphs (agents)

Ni : the bus set of the ith agent;

N a
i : the set of buses adjacent to the ith agent;

x i =
(
{Vj}j∈Ni , {uj}j∈Ni , {W

ij}j∈N a
i

)
collect the optimization variables of agent i

The corresponding augmented Lagrangian with penalty parameter ρ is

Lρ(x , z ,λ,µ) =

ns∑
i=1

fi (x i ) +
∑
i∈B

(
λi (Vi − z i ) +

ρ

2
(Vi − z i )2

)
+

ns∑
i=1

∑
j∈N a

i

(
µij(W ij − z j) +

ρ

2
(W ij − z j)2

)
.
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ADMM-based Distributed Implementation

ADMM performs the following iterative updates:

x i
k+1 = arg min

x i∈Xi

{
fi (x i ) +

∑
j∈B∪Ni

(
λj
kVj +

ρ

2
(Vj − z jk)2

)
+
∑
j∈N a

i

(
µij
kW

ij +
ρ

2
(W ij − z jk)2

)}
, ∀i ∈ [ns ]

z ik+1 = arg min

{ ∑
j :i∈N a

j

(
−µji

kz
i +

ρ

2
(W ji

k+1 − z i )2
)
− λi

kz
i +

ρ

2
(Vi,k+1 − z i )2

}
,

λi
k+1 = λi

k + ρ
(
Vi,k+1 − z ik+1

)
, ∀i ∈ B

µij
k+1 = µij

k + ρ
(
W ij

k+1 − z jk+1

)
, ∀i , ∀j ∈ N a

i
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ADMM-based Distributed Implementation
Initialization: Multipliers µ(0),λ(0).
repeat

[S1] Each agent i receives the multipliers and voltage estimates from its neighbors,
update local variables, and broadcasts the resulting voltage to its neighbors.

[S2] Each agent i uses its updated voltages, multipliers, and received bus voltages
and multipliers to compute its voltage estimates and broadcasts them to its
neighbors.

[S3] Each agent i updates its multipliers using its own updated bus voltages,
estimated voltages, as well as received voltage estimates.

until Primal & dual residuals are small
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Explicit ROA Characterization
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ROA Characterization

Finding minimum tap position in P along certain direction:

min
V ,r

c>r

s.t.
(
B̃LL + [bs ][r ]−2

)
V = h (Flow constraint)

V ≥ [r ]V0 (Secondary side voltage requirement)

r ≥ 0.

Each direction c determines a (possibly distinct) inner approximation A(r∗(c)) of the
true ROA, and their union characterizes a maximal inner approximation of the ROA:

A∪ :=
⋃
c≥0

c>1=1

A(r∗(c)).
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ROA Characterization
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Figure: ROA Characterizations for IEEE
39-bus system before and after line tripping.
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Figure: LTC dynamics at bus 8 before and
after line tripping.
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Ellipsoidal Inner Approximation of the ROA

(
B̃LL + [bs ][r ]−2

)
V = h,

[r ]−1V ≥ V0.

u=[r ]−2V−−−−−−→ B̃LLV + [bs ]u = h,
[V ]u ≥ [V0]V0.

The problem of finding the maximum volume inscribed ellipsoid in V -space can be cast as

max
C�0,α

log det C

s.t. [Cξ + α]u(ξ) ≥ [V0]V0 ∀‖ξ‖2 ≤ 1

u(ξ) = [bs ]
−1
(
h − B̃LL(Cξ + α)

)
∀‖ξ‖2 ≤ 1

Quite surprisingly, each of the robust SOC constraint above can be reformulated as an
SDP with LMIs of dimension 2(n − 1)× 2(n − 1) so the above problem admits a
tractable reformulation.
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Ellipoidal Inner Approximation of the ROA

Ellipsoid in V -space:

{V = Cξ + α, ‖ξ‖2 ≤ 1}.

With B̃LLV + [bs ]u = h, ellipsoid in u-space is

{u = Dξ + β, ‖ξ‖2 ≤ 1}.

Then the Hadamard division of vectors in the two ellipsoids parametrized by the same ξ
gives rise to a subset of P2 := {r :

√
r ∈ P} that is linear-fractional, which is

C :=
{
r̃ ∈ Rn

>0 : r̃i = (c>i ξ + αi )/(d>i ξ + βi ), ‖ξ‖2 ≤ 1, ∀i ∈ VL
}
.

We can rewrite C as an SOC set by introducing new variables: let yi = ξ/(d>i ξ + βi ) and
ti = 1/(d>i ξ + βi ), then C can be rewritten as

C =
{
r̃ ∈ Rn

>0 : r̃i = c>i yi + αi ti , d>i yi + βi ti = 1, ‖yi‖2 ≤ ti ,∀i ∈ VL
}
.
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Simulation Results
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Simulation Results: Test System

IEEE 39-bus system (decoupled Q-V model).
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Qpre

Qpost

r∗

Figure: ROA Characterizations for IEEE
39-bus system before and after line tripping.

Four scenarios:

1 Steady-state (tap position in
Qpost) after line (8, 9) outage;

2 Tap position r∗ after line (8, 9)
outage;

3 Tap position r∗ after line (8, 9)
outage with additional load;

4 Tap position r∗ after line (3, 4)
outage with additional load.
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Simulation Results: Convergence Rate

Partition 39-bus system into three
subsystems.

Stopping criterion: relative error
less than 10−4.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Without Q support

With Q support

Figure: Dynamics at bus 8 (scenario 3).

Scenario
Optimal # of

Time (sec.)
Time per

objective iterations subsystem (sec.)
1 0 39 33.01 11.00
2 4.1870 89 73.52 24.51
3 12.3824 83 65.35 21.78
4 20.4829 113 109.72 36.57

Table: Simulation Results on Convergence Rate
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Simulation Results: Reactive Power Support

Scenario Total Load Total support Percentage
1 55.10 0 0%
2 55.10 1.93 3.50%
3 58.004 3.31 5.70%
4 58.004 4.68 8.07%

Table: Needed Reactive Power Support.
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Figure: Reactive power load vs support (scenario 3).
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Extension to Full Power Flow Model
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Figure: PV curve at bus 8.
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Figure: Dynamics at bus 8.

Stability Monitoring and Control Problem

min ‖Q‖2

s.t. Pi (cii , cij , sij) = −us,igs,i ∀i ∈ N , (i , j) ∈ E
Qi (cii , cij , sij) = −us,ibs,i + Qi ∀i ∈ N , (i , j) ∈ E

c2ij + s2ij ≤ ciicjj , ∀(i , j) ∈ E

ui ≥ V 2
0,i , r

2
o,iui ≥ cii , ∀i ∈ N .
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Conclusions

Summary

New result on stability and ROA characterization of LTC dynamics

Optimization formulations for inner approximation of ROA

Convex formulations for stability monitoring and instability mitigation of LTC
dynamics

ADMM-based distributed implementation

Ongoing/future work

Extension to full power flow model

Deal with system uncertainties

Real-time implementation
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Thank you!
Questions?
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