## **Transactive Control in Transportation Systems**

Anuradha Annaswamy

Active-adaptive Control Laboratory Department of Mechanical Engineering Massachusetts Institute of Technology



(collaborative work with D'Achiardi, Guan, Tseng, Yanakiev, Mazumder, and Pilo)



## Paradigm Shift

٠

۲

•

۲

۲



Workshop on Autonomous Energy Systems, August 19-20, 2020

Grid of the 21<sup>st</sup> Century

- Distributed generation
- Visibility with varied sensors
- Controllable loads
- Intelligent edge

Image sourced: Bartz/Stockmar / CC BY-SA (https://creativecommor

- Dynamic
- Billions of controllable nodes

### **Power Balance:**

## **Becoming Dynamic**



## **Power Balance: Traditional**





## **Power Balance: Becoming Distributed**





Workshop on Autonomous Energy Systems, August 19-20, 2020 \* M. Zhao, R. V. Panda, S. S. Sapatnekar and D. Blaauw, Trans. on Computer-Aided Design of Integrated Circuits and Systems, Feb. 2002

## This Talk: Distributed Optimization Using Trains

- Transactive Control in Transportation Systems
- Co-optimization of train scheduling and grid-scheduling
  - Railway grid Dynamic Market Mechanism (*rDMM*)
  - Train Dispatch
- Simulations Amtrak Northeast Corridor (NEC)
- Co-optimization of interdependent infrastructures
  - Wind Power Producers & Natural Gas Producers
  - **o** Electricity and NG Markets
- Summary





## **TRANSACTIVE CONTROL**





## **Story of Demand Response**



- Modern grid characterized by increased penetration of renewables energy resources (RERs) leading to intermittent supply
- Storage is a great resource, but fast-acting storage is still expensive
- Flexible demand is needed to ensure power balance and cost efficiency





## **Demand Response**

- Voluntary change in the energy consumption of an electric utility customer to better match the demand for power with the supply.
- Most ISOs and Utilities offer incentive DR programs (e.g. PJM and PG&E) ۲
- DR taxonomies based on the end-users' sectors: residential, commercial buildings, industrial, • and transportation





Source: U.S. Energy Information Administration, Annual Energy Outlook 2018, Table 4, February 2018





9.5%

6.8%

Transactive control: A mechanism through which system- and component-level decisions are made through economic **transactions** between the components of the system, in conjunction with or in lieu of traditional controls.\*



Transactive energy: A system of economic and control mechanisms that allows the dynamic balance of supply and demand across the entire electrical infrastructure using value as a key operational parameter.\*\*





## **Transactive Control in Smart Grids**





9

## Pacific Northwest Demonstration Project

#### What:

- \$178M, ARRA-funded, 5-year demonstration
- 60,000 metered customers in 5 states

#### Why:

- Quantify costs and benefits
- Develop communications protocol
- Develop standards
- Facilitate integration of wind and other renewables

#### Who:

Led by Battelle and partners including BPA, 11 utilities, 2 universities, and 5 vendors



Reference: Courtesy Jakob Stoustrup, Tutorial, American Control Conference, 2016





### **Transactive Control**

A mechanism through which system- and component-level decisions are made through economic **transactions** between the components of the system, in conjunction with or in lieu of traditional controls









## Transactive Control in Transportation Systems



Example 1: Dynamic Toll-pricing for congestion reduction Example 2: Shared Mobility on Demand using Dynamic Routing and Pricing



## Toll pricing controller\*





\* A. M. Annaswamy, Y. Guan, H. E. Tseng, H. Zhou, T. Phan and D. Yanakiev, "Transactive Control in Smart Cities," in Proceedings of the IEEE, vol. 106, no. 4, pp. 518-537, April 2018. Workshop on Autonomous Energy Systems, August 19-20, 2020

## **Response to High Input Flow**

High input flow is introduced in the middle of the operating period to test the systems' ability to prevent congestion. Our model-based control (blue) is successful in keeping the HOT density low compared to MnPASS (red).



## Transactive Control in Shared Mobility\*







## **Passenger Acceptance: Utility Function**

• Utility function (for passenger k)

 $\overline{U_{a_k} = a + b_p} \cdot WalkT_{pk} + b_w \cdot WaitT_k + b_r \cdot RideT_k + b_d \cdot WalkT_{dk} + \gamma \cdot \rho_k$ 

- Discrete choice model (two alternatives; U<sub>ak</sub>, U'ak)
  - Probability of acceptance:  $p_{a_k}$



 $p_{a_{\mathbf{k}}} = \frac{1}{1 + e^{-\rho \Delta U_{\mathbf{k}}}}, \qquad \Delta U_{\mathbf{k}} = U_{a_{\mathbf{k}}} - U'_{a_{\mathbf{k}}}$ 

## **Conventional Utility Theory (contd.)**

- Several alternatives with utilities
- Corresponding probabilities



 $u_1$ : Utility function of taking a private car;

Utility function of ride-sharing  $\sum_{i=1}^{m} U_{a_i}{}^{j} p_i{}^{j}$  $u_i = \sum_{j=1}^{m} U_{a_i}{}^{j} p_i{}^{j}$   $u_i = \int_{t_p^1}^{t_p^2} U_a(\tau) p_i(\tau) d\tau$ T;  $u_n$ : Utility function of taking a bus

 $U_{a_1}, ..., U_{a_n}$ 

 $p_1, ..., p_n$ 

• Not adequate if uncertainty is large

## **Prospect Theory – Decision under Uncertainty**

- The theory was created in 1979<sup>1</sup> and developed in 1992<sup>2</sup> by Kahneman and Tversky
- Winner of Nobel Prize in Economics in 2001
- One of the foundations of behavioral economics
- Captures how human beings make decisions under risk



Daniel Kahneman



Amos Tversky

Kahneman, Daniel, and Amos Tversky. "Prospect theory: An analysis of decision under risk." Handbook of the fundamentals of financial decision making: Part I. 2013. 99-127.
 Tversky, Amos, and Daniel Kahneman. "Advances in prospect theory: Cumulative representation of uncertainty." *Journal of Risk and uncertainty* 5.4 (1992): 297-323.

## **Prospect Theory for Mode Choice\***

- In prospect theory\*:  $u_i = \sum_{j=1}^m V(u_i^{\ j}) \pi(p_i^{\ j})$
- Human beings are irrational in two ways:

1. How do we perceive utility  $V(u_i^{j})$ : loss aversion - losses hurt more than the benefit of gains

$$V(u_i^{\ j}) = \begin{cases} \left(u_i^{\ j} - R\right)^{\beta^+}, & \text{if } u_i^{\ j} > R\\ -\lambda \left(R - u_i^{\ j}\right)^{\beta^-}, & \text{if } u_i^{\ j} < R \end{cases}$$

*R*: Frames the problem;  $\lambda > 1$ 

2. How do we assess probability  $\pi(p_i^{j})$ : overreact to small probability events and underreact to large probability events

$$\pi(p_i^{j}) = \exp(-(-lnp_i^{j})^{\alpha}), \qquad \alpha < 1$$

\* Kahneman and Tversky, 1992





## **Prospect Theory for Shared Mobility**

• The utility function is a combination of time and price:

$$u = a + b_p T_{walk} + b_w T_{wait} + b_r T_{ride} + \gamma_l$$

•  $\tau \in [t_p^1, t_p^2], u: u(\tau); \tau$ : Shuttle arrival interval  $U_R^s \neq \int_{-\infty}^R V(u) \frac{d}{du} \{\pi[F_U(u)]\} du + \int_R^{\infty} V(u) \frac{d}{du} \{-\pi[1 - F_U(U)]\} du$ 



- *R*: reference
- $F(\tau) = \int_{-\infty}^{\tau} df(\tau)$  Cumulative Distribution Function (CDF)
  - Extract from demand pattern and historical data
  - $-F(\tau)$  exists but unknown

Objective probability of acceptance  $p^o = \frac{e^{U^o}}{e^{U^o} + e^{A^o}}$ U<sup>o</sup> and A<sup>o</sup>: objective utility of the SMoDS and the alternative

Subjective probability of acceptance  $p_R^s = \frac{e^{U_R^s}}{e^{U_R^s} + e^{A_R^s}}$   $U_R^s$  and  $A_R^s$ : subjective utility of the SMoDS and the alternative

#### Results\*





Workshop on Autonomous Energy Systems, August 19-20,

\* A. M. Annaswamy, Y. Guan, H. E. Tseng, H. Zhou, T. Phan and D. Yanakiev, "Transactive Control in Smart Citles," in Proceedings of the IEEE, vol. 106, no. 4, pp. 518-537, April 2018. 47

## **CO-OPTIMIZATION OF GRID-SCHEDULING AND TRAIN-SCHEDULING**





## **Transactive Control in Power Grids**



\* D. D'Achiardi, A.M. Annaswamy, S.K. Mazumder, and E. Pilo, Transactive Control of Electric Railways, http://arxiv.org/abs/2006.08119



## **Smart Railway Technologies**

- Automation technologies yield trains that can follow optimal trajectories
  - e.g. Positive Train Control (PTC) in US Northeast Corridor
- Train operators maintain a schedule margin to meet timeliness objectives
  - 15% margins on US schedules, 7% in Europe [1]
- Bidirectional power flow enabled by regenerative braking in electric trains (deceleration  $\equiv$  inject power into the grid)
- Integration of Distributed Energy Resources (DERs)
  - Reduce operational costs
  - Reduce carbon footprint
  - Improve resiliency (e.g. return trains to stations during blackouts)

[1] Transit Matters. "Regional Rail for Metropolitan Boston." Boston, MA. URL: http://transitmatters.org/regional-rail-doc









## An Example: Trip from Boston to New Haven



• University Park, MA

 $\rightarrow$  Providence, RI  $\rightarrow$  New Haven, CT

- 4 dispatch regions → 4 Area
   Control Centers (ACC)
- Each ACC faces hourly energy pricing from utility service
- Several dispatchable DERs at each ACC
- Goal: Grid (DER)+Train optimization





## DERs at University Park Station, MA





## A 2-step optimization approach\*



2. Fix the electricity price; optimize train dispatch



\* D. D'Achiardi, A.M. Annaswamy, S.K. Mazumder, and E. Pilo, Transactive Control of Electric Railways, <u>http://arxiv.org/abs/2006.08119</u> Workshop on Autonomous Energy Systems, August 19-20, 2020



## Step 1: DER dispatch using DMM\*

$$\min_{y_i, i \in \mathcal{A}_n} \sum_{i \in \mathcal{A}_n} J_i(y_i)$$

$$\begin{aligned} h_e &= \hat{P}^{re} + \hat{P}^T + \hat{P}^e - \sum_{i \in \mathcal{A}_n} g_i^e(y_i) = 0 \\ h_{th} &= \hat{P}^{th} - \sum_{i \in \mathcal{A}_n} g_i^{th}(y_i) = 0 \\ \underline{y_i} \leq y_i \leq \overline{y_i} \end{aligned}$$

cost minimization  $\mathcal{A}_n$ :

power balance thermal balance capacity constraints

A Dynamic Market Mechanism Approach to OPF:

$$L(x,\rho,\gamma) = f(x) + \rho^{T}h(x) + \gamma^{T}g(x)$$
  

$$x(k+1) = x(k) - \alpha_{1}\nabla_{x}L(x^{k},\rho^{k},\gamma^{k})$$
  

$$\rho(k+1) = \rho(k) - \alpha_{2}\nabla_{\rho}L(x^{k},\rho^{k},\gamma^{k})$$



DMM: Dynamic Market Mechanisms – allows real-time information regarding renewables and loads to be incorporated.\*



## Step 2: Train Dispatch



**Cost Minimization Objective** 

Results in  $P_{1,1}^*, P_{1,2}^*, P_{1,3}^*, P_{2,3}^*$ 

train motion dynamics

power bounds traction force bounds acceleration bounds speed bounds minimum arrival time station s maximum departure time station s



## A 2-step optimization approach\*

2.



## **CO-OPTIMIZATION OF GRID-SCHEDULING AND TRAIN-SCHEDULING**





## Simulations – Train Location & Dispatch Profiles



Field data: Yields a total trip-cost of \$200





## Simulations – Train Location & Dispatch Profiles



62% energy cost reduction from field to minimum work (train only optimization) ( $200 \rightarrow 76$ )





## Simulations – train location & dispatch profiles



- Distributed Optimization approach (grid+train) results in a 80% cost reduction per trip compared to field (\$200→\$40)
- A 47% trip-cost reduction compared to a minimum work (train-only optimization) Workshop on Autonomous Energy Systems, August 19-20, 2020



## **CO-OPTIMIZATION OF INTER-DEPENDENT INFRASTRUCTURES**





## **Renewable and Natural Gas Power Plant Partnerships\***

#### Problem

- Urgent need to accommodate renewables
- Speculation: Renewables will need to be dispatched (not treated as negative load)
- Speculation: Penalties  $\lambda_p = \alpha \lambda_{DA}$  ,  $\alpha > 1$  for unmet commitments
  - may discourage renewable utilization

#### Approach

Secondary market to cover unmet commitments at





#### Impact

- Reliability contracts "firm up" commitments
- NGPPs benefit from exclusive energy rights to RPP shortfalls.
- RPPs benefit from reduced penalty payments
  - (1) more aggressive bidding
  - (2) higher renewable utilization

\* D. D'Achiardi, N. Aguiar, S. Baros, V. Gupta and A. M. Annaswamy. <u>Reliability Contracts Between Renewable and Natural Gas Power Producers</u>. In IEEE Transactions on Control of Network Systems, 2019



### Interdependency between NG and Electricity Networks – Market Flow\*



- Two main issues: (a) Market misalignment (b) Unequal access to gas between NGPPs (GenCos) and RCITs (LDCs)
- Analysis of vulnerabilities was carried out.

\* N. Nandakumar and A. M. Annaswamy, "Impact of increased renewables on natural gas markets in eastern United States," in *Journal of Modern Power Systems and Clean Energy*, May 2017 Workshop on Autonomous Energy Systems, August 19-20, 2020



## Distributed Optimization Using Trains

- Transactive Control in Transportation Systems
- Co-optimization of train scheduling and grid-scheduling
  - Railway grid Dynamic Market Mechanism (*rDMM*)
  - Train Dispatch
- Simulations Amtrak Northeast Corridor (NEC)
- Co-optimization of interdependent infrastructures
  - Wind Power Producers & Natural Gas Producers
  - o Electricity and NG Markets





## A recent "9 pm for 9 minutes" event in India on April 9, 2020



Figure 11: All India Demand Trend during the lights off event [1]

[1] Report on Pan India Lights Off Event 9 PM 9 Minutes [https://posoco.in/wp-content/uploads/2020/05/Report-on-Pan-India-Lights-Off-Event-9-PM-9-Minutes-on-5th-April-2020.pdf]

[2] ISO-NE Duck Curve [https://pv-magazine-usa.com/2018/05/08/the-duck-curve-comes-to-new-england/]



## What's next? Towards Ultra-Distributed Control



# **THANK YOU!**



