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March 8th 2014:   Impact of wind 
and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Challenges

Some of the Challenges

1 Large sunk cost

2 Engineering uncertainty

3 Policy uncertainty

4 Volatility

Start at the bottom...
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Challenges

Some of the Challenges
What’s so scary about volatility?

4 Volatility
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Challenges

Some of the Challenges
What’s so scary about volatility?

4 Volatility =⇒ greater regulation needs
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Challenges

Comparison: Flight control
How do we operate the grid in a storm?

Balancing Authority Ancillary Services Grid

Measurements:
 Voltage
 Frequency
 Phase

Σ

−

Brains

Brawn

What Good Are These?
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Challenges

Frequency Decomposition
Taming the Duck

One Day at CAISO 2020

ISO/RTOs are seeking ramping products
to address engineering challenges, and
to avoid scarcity prices

Do we need ramping products?
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Challenges

Frequency Decomposition
Smoothing Contingencies
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Challenges

Demand Response the Answer?
CPUC Decision 14-03-026 March 27, 2014

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

... to Enhance the Role of Demand Response in Meeting the State’s Resource Planning Needs and Operational Requirements.

Need to rethink role of demand-side resources
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Challenges

Demand Response the Answer?
Audrey Zibelman’s bold plan to transform New York’s electricity market

Need to rethink role of demand-side resources
8 / 40
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Virtual Energy Storage Capacity

Capacity of Virtual Energy Storage
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Virtual Energy Storage Capacity

Buildings as Batteries
HVAC flexibility to provide additional ancillary service

◦ Buildings consume 70% of electricity in the US

◦ Buildings have large thermal capacity

◦ Modern buildings have fast-responding equipment:
VFDs (variable frequency drive)
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Virtual Energy Storage Capacity

Buildings as Batteries
Tracking RegD at Pugh Hall

In one sentence: Ramp up and down power consumption, just 10%, to
track regulation signal.
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How demand response from commercial buildings will provide the regulation ..., Allerton, 2012
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Virtual Energy Storage Capacity

Pugh Hall @ UF
How much?
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. One AHU fan with 25 kW motor:
> 3 kW of regulation reserve

. Pugh Hall (40k sq ft, 3 AHUs):
> 10 kW

Indoor air quality is not affected

. 100 buildings:
> 1 MW

just using 10% of the fans
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Virtual Energy Storage Capacity

Capacity
100,000 residential water heaters Residential Water Heater:   Consumer Wants Hot Water

0 5 10 15 20

Temperature Power G(t) 
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Question: What is the capacity in terms of

Virtual energy storage (MWh)
Virtual power (MW)

Energy Capacity

Suppose system is fully charged at time t = 0.
T = time to discharge: All units off for 0 ≤ t ≤ T

t
t = 0 t = T

Water Temperature of Each Water Heater
oF

110
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117 No power consumption

∼ agrees with H. Hao et. al., Aggregate flexibility of thermostatically controlled loads, 2015
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Virtual Energy Storage Capacity

Capacity
100,000 residential water heaters

Capacity

P+ = Pavg

P− = Ppeak − Pavg

E = T × Pavg

For a single high-end unit:
E1 = 6 hrs× 100 Watts

≈ 10 MW, 60 MWh
battery system

The population of California is 40 million,
and the electricity doesn’t just go into the hot tubs
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Virtual Energy Storage Achieving Capacity

Tracking with 100,000 Water Heaters
Power Limits – Regulation

80

100

120

140

0 5 10 15 200 5 10 15 20

80

100

120

140

80

100

120

140

0

50

100

-50

0

50

M
W

M
W

M
W

-10

0

10

Nominal power consumption 

Tracking

Tracking

Typical Load Response

te
m

p 
(F

)
te

m
p 

(F
)

te
m

p 
(F

)

r t
≡

0
N

o 
re

g:
|r t

|≤
40

 M
W

|r t
|≤

10
 M

W

Lo
ad

 O
n

Lo
ad

 O
n

Lo
ad

 O
n

(hrs)t (hrs)t

BPA Reference:
Power Deviation

rt

Tracking results with 100,000 water heaters, and the behavior of a single
water heater in three cases, distinguished by the reference signal [1].

Theoretical power capacity is approx 8 MW (with no flow)

15 / 40



Virtual Energy Storage Achieving Capacity

Tracking with 100,000 Water Heaters
Energy Limits – Ramps and Contingencies
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 Tracking a sawtooth  wave with 100,000 water heaters: 

Average power consumption = 8MW

Quality of Service = temperature limits

By design, QoS violation is not possible

Distributed Control Design for Balancing the Grid Using Flexible Loads, Springer 2018
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Virtual Energy Storage Achieving Capacity

DER Flexibility Assessment & Valuation
Ongoing GMLC project – PNNL/ORNL/UF

Virtual Battery-Based Characterization
and Control of Flexible Building Loads
Using VOLTTRON

Value in Siskiyou vs San Diego
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Demand Dispatch

Balancing the Grid
Demand Dispatch the Answer?

Players:
Grid operator = Balancing Authority, or BA
Consumers (residential in this lecture)

A partial list of the needs of the grid operator, and each consumer:

High quality AS?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?
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Balancing the Grid
Demand Dispatch the Answer?
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Fig. 10. Coal-�red generators do not follow regulation signals precisely....
 Some do better than others

Regulation service from generators is not perfect
Frequency Regulation Basics and Trends — Brendan J. Kirby, December 2004

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?

18 / 40
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Demand Dispatch

Balancing the Grid
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and each consumer:

High quality AS?

Reliable?
Will AS be available each day?
It may vary with time, but capacity must be predictable.

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?
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Demand Dispatch

Balancing the Grid
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and each consumer:

High quality AS?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?
Fresh fish, comfy house, clean pool, hot water, cool data centers,
happy farmers, ...
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Temperature Power

Residential Water Heater:   Consumer Wants Hot Water ??
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U(G(t))
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Demand Dispatch

Balancing the Grid
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and each consumer:

High quality AS?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?

Demand dispatch can do all of this (by design)

18 / 40



Demand Dispatch A Brief History

Demand Dispatch the Answer?
Related Prior Research

Schweppe’s FAPER Concept

Industry now recognizes the value of randomization for distributed control
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Demand Dispatch A Brief History

Demand Dispatch the Answer?
Related Prior Research

Schweppe’s FAPER Concept

Mathematical foundations: Malhamé et. al. in 80s [Mean-Field Model]

Randomized control:
Callaway, Hiskens, Mathieu, Kizilkale, Malhamé, Strbac, Almassalkhi, Hines

Often system inversion to obtain linear MFM

Industry now recognizes the value of randomization for distributed control
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Demand Dispatch A Brief History

Demand Dispatch the Answer?
Related Prior Research

Industry now recognizes the value of randomization for distributed control

Publication number US8328110 B2
Publication type Grant
Application number US 12/499,347
Publication date 11 Dec 2012
Filing date 8 Jul 2009
Priority date 8 Jul 2009
Fee status Paid

Also published as US20110006123

Inventors Jeffrey O. Sharp

Original Assignee Schneider Electric USA, Inc.

Export Citation BiBTeX, EndNote, RefMan

Patent Citations (5), Classifications (8), Legal Events (3)
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Electrical load disconnect device with
electronic control 
US 8328110 B2
ABSTRACT

Electrical load spreading arrangements reduce peak power demand. An
enclosure houses an electronic circuit board, which receives at a first input
terminal a first thermostat control signal from a thermostat intended to control a
first air conditioning unit and at a second input terminal a second thermostat
control signal from a thermostat intended to control a second AC unit. A
controller on the circuit board is programmed with instructions stored in a
memory coupled to the controller causing the controller to monitor the first and
second input terminals to determine the timing and duration of the thermostat
control signals passed to the output terminals for activating or deactivating the
AC units such that overlapping operation of the AC units is reduced particularly during peak demand periods. A similar arrangement may be applied to a broader
class of HVAC equipment, including water heaters, for example.

     

IMAGES (5)
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Demand Dispatch Intelligence at the Load

Control Architecture
Intelligence at the Load distinguishes our work from others

Step 1: Load-level Feedback Loops
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Basic Ingredients: 1.  Randomized decision rule design.  
 Maps (X, ζ) to a probability of on/o�
2.  Secondary control monitors QoS,
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3. Newest innovation: additional �ltering of ζ
 to invert mean-�eld dynamics 
 in a speci�c frequency range
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Control Architecture
Intelligence at the Load
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Control Architecture
Assume BA has measurements of aggregate power consumption

Step 3: Actuator Feedback Loop Easily controllable by design
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Demand Dispatch Demand Dispatch Design

General Principles for Design

Two components to local controlLocal feedback loop

Local
Control

Load i
ζt Y i

tU i
t Pre�lter Decision

ζt U i
t
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t
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t

Each load monitors its state and a regulation signal from the grid.

Prefilter and decision rules designed to respect needs of load and grid

Randomized policies required for finite-state loads
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Demand Dispatch Demand Dispatch Design

MDP model

MDP model

The state for a load is modeled as a controlled Markov chain.
Controlled transition matrix:

Pζ(x, x
′) = P{Xt+1 = x′ | Xt = x, ζt = ζ}

Two components to local controlLocal feedback loop
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Control

Load i
ζt Y i

tU i
t Pre�lter Decision

ζt U i
t

Xi
t

Xi
t

Questions:

• How to design Pζ? • How to analyze aggregate of similar loads?
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Demand Dispatch Demand Dispatch Design

How to analyze aggregate?
Mean field model, R. Malhame et. al. 1984 –
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Nonlinear state space model Linearization useful for control design
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Demand Dispatch Demand Dispatch Design

How to design Pζ?

Goals: Desirable properties for the mean field model, with strict bounds on
QoS to consumer

Approaches: Start with a nominal model, with Markov transition law P0.

Three possible approaches to design of {Pζ}:

Myopic Design: Pζ(x, x
′) = exp(ζU(x′)− Λζ(x))P0(x, x

′).

Optimization: P̌ζ = arg max
P,π

{
ζπ(U)−K(P‖P0) : πP = π

}
We have shown that the linearized MFM is passive if P0 is reversible.

An alternative to the optimization approach: Passivity by design
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Demand Dispatch Demand Dispatch Design

Nonlinear state space model: µt+1 = µtPζt, yt = 〈µt, U〉
Linearization useful for control design
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Questions and Conclusions Stability

Question of Time Scales

Question: Can a smart fridge provide synthetic droop?

There is hope: They did a good job in the past!

Other local services may also be feasible and valuable
Publication number US8328110 B2
Publication type Grant
Application number US 12/499,347
Publication date 11 Dec 2012
Filing date 8 Jul 2009
Priority date 8 Jul 2009
Fee status Paid

Also published as US20110006123
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Electrical load disconnect device with
electronic control 
US 8328110 B2
ABSTRACT

Electrical load spreading arrangements reduce peak power demand. An
enclosure houses an electronic circuit board, which receives at a first input
terminal a first thermostat control signal from a thermostat intended to control a
first air conditioning unit and at a second input terminal a second thermostat
control signal from a thermostat intended to control a second AC unit. A
controller on the circuit board is programmed with instructions stored in a
memory coupled to the controller causing the controller to monitor the first and
second input terminals to determine the timing and duration of the thermostat
control signals passed to the output terminals for activating or deactivating the
AC units such that overlapping operation of the AC units is reduced particularly during peak demand periods. A similar arrangement may be applied to a broader
class of HVAC equipment, including water heaters, for example.
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Questions and Conclusions Situational Awareness

Question: What is the State of Charge

Estimating the state for the MFM is not realistic in general [16]

Estimating the baseline is a philosophical question

How do we define and estimate the State of Charge?
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Questions and Conclusions Impact on Consumers

Question: Impact on Consumers

The Mean Field Model is based on the Law of Large Numbers

There is an associated Central Limit Theory

More generally:

What is the cost to consumers? Any additional cycling or energy cost?

A better science for enforcing QoS/cost constraints
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Questions and Conclusions Value of Performance

Question: Value of Performance
Do we need such accurate tracking?
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Fig. 10. Coal-�red generators do not follow regulation signals precisely....
 Some do better than others

Regulation service from generators is not perfect
Frequency Regulation Basics and Trends — Brendan J. Kirby, December 2004

∗despite hurricanes
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The grid today is reliable∗, despite the poor services offered by generators
Questions remain:

What is the cost of poor tracking?

How do we deal with dynamics/uncertainty in capacity of virtual
storage from loads?

∗despite hurricanes
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Questions and Conclusions Smart Fridge / Dumb Grid?

Question: Control Architecture
Smart Fridge / Dumb Grid?

Local intelligence at each load =⇒ ensemble looks like a giant battery.

Does one-way communication suffice?
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Questions and Conclusions Markets

Questions: Markets
Rationality =⇒ risk-aware

Since Schweppe, there has been a passion for competitive equilibrium
analysis, with power treated as the commodity of interest.
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Trouble with current thinking:

Long-term risk. The marginal-cost framework does not provide
adequate incentives for investment – this was recognized by EDF
many decades ago.
This was also recognized by Schweppe in the 80s [2].
Short term risk faced by grid operator:

Will services be available when needed?
Quality sufficient?

What do consumers want? Risk comes in many flavors:
Is my power available?
Is my bill predictable?
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