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Risk: active DERs introduce rapid random 
fluctuations in supply, demand, power quality 
increasing risk of blackouts 

Opportunity: active DERs enables realtime 
dynamic network-wide feedback control, 
improving robustness, security, efficiency 

Caltech research: distributed control of networked DERs   

•  Foundational  theory, practical algorithms, concrete  
    applications 
•  Integrate engineering and economics 
•  Active collaboration with industry 



Autonomous energy grid 

Computational challenge 
n  nonlinear models, nonconvex optimization 

Scalability challenge 
n  billions of intelligent DERs 

Increased volatility 
n  in supply, demand, voltage, frequency 

Limited sensing and control 
n  design of/constraint from cyber topology 

Incomplete or unreliable data 
n  local state estimation & system identification 

Data-driven modeling and control 
n  real-time at scale 

many other important problems, inc. economic, regulatory, social, ... 
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a sample of our work for illustration 



Outline 

Relaxations of AC OPF 
n  Dealing with nonconvexity 

Distributed AC OPF 
n  Dealing with scalability 

Realtime AC OPF 
n  Dealing with volatility 

Optimal placement 
n  Dealing with limited sensing/control 



Relaxations of AC OPF 
dealing with nonconvexity 

  
Low, Convex relaxation of OPF, 2014 

http://netlab.caltech.edu 

Bose (UIUC) Chandy Farivar (Google) Gan (FB) Lavaei (UCB) 

many others at & outside Caltech … 

Li (Harvard) 



Optimal power flow (OPF) 

Computational challenge 
n  OPF underlies numerous power system applications but 

is nonconvex (and NP-hard) 
Scalability challenge 

n  Future smart grid will have billions of intelligent 
distributed energy resources (DERs) 

Our approach 
n  Computation: developed relaxation theory that exploits 

hidden convexity structure 
n  Scalability: developed distributed algorithms 

implementable by DERs based on relaxation 



Optimal power flow (OPF)  
min generation cost, network loss 

generation limits 

voltage constraints 

sj =  tr Yj
HVV H( )          for node  jpower flow equations: 

•          describes network topology and impedances 

•         is net power injection (generation) at node j 
•  “power balance at each node j” (Kirchhoff’s law) 

Yj
H

sj

min
V∈Cn

   tr CVV H( )
s. t.     s j ≤  tr Yj

HVV H( )  ≤ sj
          v j ≤  Vj

2
 ≤ vj

C,  Yj ∈C
n×n,   s j, sj ∈C,  v j,vj ∈ R



Optimal power flow (OPF) 

min
V∈Cn

   tr CVV H( )
s. t.     s j ≤  tr Yj

HVV H( )  ≤ sj
          v j ≤  Vj

2
 ≤ vj

min generation cost, network loss 

generation limits 

voltage constraints 

nonconvex feasible set 

•          not Hermitian (nor positive semidefinite) 

•         is positive semidefinite (and Hermitian) 
 
nonconvex QCQP 

Yj
H

C

Multiple solutions

11/66

[Ian Hiskens] 



min            tr CW

subject to   s j ≤ tr Yj
HW( ) ≤ s j         v j ≤Wjj ≤ vj

                  W ≥ 0,   rank W =1

Equivalent problem:  

Equivalent feasible sets 

convex in W 
except this constraint 

quadratic in V 
linear in W  

min            tr CVV H

subject to   s j ≤  tr Yj
HVV H( )  ≤  s j      v j ≤  |Vj |2  ≤  vj

V



Solution strategy 

relaxation:    min
x̂∈X+

 f x̂( )

OPF:            min
x∈X

 f x( )

If optimal solution      satisfies easily checkable conditions, 
then optimal solution      of OPF can be recovered   

x̂*
x*



Equivalent relaxations 

W+ WG
+

V W WG

For radial networks: always solve SOCP ! 

Theorem 
n  Radial G: SOCP is equivalent to SDP (          ) 
n  Mesh G: SOCP is strictly coarser than SDP 

V⊆W+ ≅WG
+



Exact relaxation 

For radial networks, sufficient conditions on 
n  power injections bounds, or  
n  voltage upper bounds, or 
n  phase angle bounds 



Exact relaxation 

For radial networks, sufficient conditions on 
n  power injections bounds, or  
n  voltage upper bounds, or 
n  phase angle bounds 



Exact relaxation 

graph of QCQP 
G C,Ck( )   has edge (i, j)   ⇔

Cij ≠ 0  or  Ck[ ]ij ≠ 0  for some k     

QCQP 

QCQP over tree 
G C,Ck( )   is a tree

C,Ck( )
min          tr CxxH( )
over         x ∈Cn

s.t.            tr Ckxx
H( )  ≤   bk         k ∈ K     



Exact relaxation 

min          tr CxxH( )
over         x ∈Cn

s.t.            tr Ckxx
H( )  ≤   bk         k ∈ K     

Key condition 
i ~ j :   Cij, Ck[ ]ij ,  ∀k( )  lie on half-plane through 0

QCQP C,Ck( )

Theorem 
       SOCP relaxation is exact for  
       QCQP over tree  

Re

Im

Bose et al 2012, 2014 
Sojoudi, Lavaei 2013 



Implication on OPF 
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[Y j] jk = �1
2
(b jk + ig jk)

[Yk] jk = �1
2
(b jk � ig jk)

as well as the angles of �[F j] jk,�[Fk] jk and
�[Y j] jk,�[Yk] jk. These quantities are shown in Figure
1 with their magnitudes normalized to a common value and
explained in the caption of the figure.

Φ j
"# $% jk

Re

Im

− Φ j
#$ %& jk

Φk[ ] jk

− Φk[ ] jk

Ψ j
"# $% jk − Ψ k[ ] jk

Ψ k[ ] jk − Ψ j
#$ %& jk

lower)bounds)
on))pj,qj, pk,qk

α jk

[C0 ] jk

upper)bounds)
on))pj,qj, pk,qk

Fig. 1: Condition A2’ on a line ( j,k) 2 E. The quantities
([F j] jk, [Fk] jk, [Y j] jk, [Yk] jk) on the left-half plane corre-
spond to finite upper bounds on (p j, pk,q j,qk) in (16a)–
(16b); (�[F j] jk,�[Fk] jk,�[Y j] jk,�[Yk] jk) on the right-half
plane correspond to finite lower bounds on (p j, pk,q j,qk).
A2’ is satisfied if there is a line through the origin, specified
by the angle a jk, so that the quantities corresponding to
finite upper or lower bounds on (p j, pk,q j,qk) lie on one
side of the line, possibly on the line itself. The load over-
satisfaction condition in [25], [29] corresponds to the Im-
axis that excludes all quantities on the right-half plane. The
sufficient condition in [28, Theorem 2] corresponds to the
red line in the figure that allows a finite lower bound on the
real power at one end of the line, i.e. p j or pk but not both,
and no finite lower bound on reactive power q j.

Condition A2 applied to OPF (16) takes the following form
(see Figure 1):
A2’: For each link ( j,k) 2 E there is a line in the complex

plane through the origin such that [C0] jk as well as
those ±[Fi] jk and ±[Yi] jk corresponding to finite lower
or upper bounds on (pi,qi), for i = j,k, are all on one
side of the line, possibly on the line itself.

Let Copt and Csocp denote the optimal values of OPF (2) and
OPF-socp (7) respectively.

Corollary 3: Suppose G is a tree and A2’ holds.
1) Copt =Csocp. Moreover an optimal solution V opt of OPF

(2) can be recovered from every optimal solution W socp
G

of OPF-socp (7).
2) If, in addition, A1 holds then OPF-socp (7) is exact.

It is clear from Figure 1 that condition A2’ cannot be satis-
fied if there is a line where both the real and reactive power
injections at both ends are both lower and upper bounded
(8 combinations as shown in the figure). A2’ requires that
some of them be unconstrained even though in practice they
are always bounded. It should be interpreted as requiring
that the optimal solutions obtained by ignoring these bounds
turn out to satisfy these bounds. This is generally different
from solving the optimization with these constraints but
requiring that they be inactive (strictly within these bounds)
at optimality, unless the cost function is strictly convex. The
result proved in [26] also includes constraints on real branch
power flows and line losses. Corollary 3 includes several
sufficient conditions in the literature for exact relaxation as
special cases; see the caption of Figure 1.

Corollary 3 also implies a result first proved in [16], using
a different technique, that SOCP relaxation is exact in BFM
for radial networks when there are no lower bounds on power
injections s j. The argument in [16] is generalized in [17, Part
I] to the case with convex objective functions, shunt elements,
and line limits in terms of upper bounds on ` jk. Assume

A3: The cost function C(x) is convex, strictly increasing
in `, nondecreasing in s = (p,q), and independent of
branch flows S = (P,Q).

A4: For j 2 N+, s j =�•� i•.

Popular cost functions in the literature include active power
loss over the network or active power generations, both of
which satisfy A3. The next result is proved in [16], [17].

Theorem 4: Suppose G̃ is a tree and A3–A4 hold. Then
OPF-socp (13) is exact.

Remark 2: If the cost function C(x) in A3 is only nonde-
creasing, rather than strictly increasing, in `, then A3–A4
still guarantee that all optimal solutions of OPF (10) are
(i.e., can be mapped to) optimal solutions of OPF-socp (13),
but OPF-socp may have an optimal solution that maintains
strict inequalities in (11c) and hence is infeasible for OPF.
Even though OPF-socp is not exact in this case, the proof of
Theorem 4 constructs from it an optimal solution of OPF.

B. Voltage upper bounds

While type A conditions (A2’ and A4 in the last sub-
section) require that some power injection constraints not be
binding, type B conditions require non-binding voltage upper
bounds. They are proved in [31], [32], [33], [34] using BFM.

For radial networks the model originally proposed in [18],
which is (11) with the inequalities in (11c) replaced by
equalities, is exact. This is because the cycle condition (12)
is always satisfied as the reduced incidence matrix B is n⇥n
and invertible for radial networks. Following [34] we adopt
the graph orientation where every link points towards node

Not both lower & upper bounds on real & reactive powers at both ends  
of a line can be finite  
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(a) (b)

Fig. 4: Projections of feasible regions on p1 � p2 space for 3-bus system in (3).
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Fig. 5: Zoomed in Pareto fronts of the 3-bus case in p1 � p2 space.

B. IEEE benchmark systems

For IEEE benchmark systems [35], [42], we solve R1, R2 and Rch in MATLAB using CVX

[43] with the solver SeDuMi [44]. The objective values and running times are presented in

Table II. As in Theorem 1, the problems R1 and Rch have the same objective function value,

i.e., r⇤1 = r⇤ch. However, the optimal objective value of R2 is lower, i.e., r⇤2 < r⇤1. For IEEE

benchmark systems, note that R1 and Rch are exact [14]–[16], while R2 is not. As evidenced

by the running times in Table II, Rch is much faster than R1. The chordal extension of the

May 31, 2013 DRAFT
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(a) (b)

graphs are computed in advance for each case using the algorithm in [45]. R2 is faster than both

R1 and Rch, but yields an infeasible solution for most IEEE benchmark systems considered.

TABLE II: Comparing objective values and running times on IEEE systems

Test case Objective value Running times

R1, Rch R2 R1 Rch R2

9 bus 5297.4 5297.4 0.2 0.2 0.2

14 bus 8081.7 8075.3 0.2 0.2 0.2

30 bus 574.5 573.6 0.4 0.3 0.3

39 bus 41889.1 41881.5 0.7 0.3 0.3

57 bus 41738.3 41712.0 1.3 0.5 0.3

118 bus 129668.6 129372.4 6.9 0.7 0.6

300 bus 720031.0 719006.5 109.4 2.9 1.8

2383 bus 1840270 1789500.0 - 1005.6 155.3

VI. CONCLUSION

TBD

(Bose says: I think it’s better to talk about this in the conclusion.) (Steven says: Summary

about specific relaxations: SDP = chordal tighter than SOCP; BFM = BIM, SOCP in BFM =

SOCP in BIM; equivalence of feasible sets. Or summarize these in Conclusion section?)

May 31, 2013 DRAFT

power flow 
solution X 

SDP Y 
SOCP Y 

Real Power Reactive Power 

•  Relaxation is exact if X and Y have same 
Pareto front 

•  SOCP is faster but coarser than SDP 

Bose, Low, Teeraratkul, Hassibi TAC 2015 



Fig. 1: J(Xk) vs # of Iterations (Bisection Method) (a) 3-Bus Example (b) 5-Bus Example, (c) Modified IEEE 14 Bus Example (14B)

optimal point (Column 3) typically in a small number of iter-
ations (Column 4). Thus the optimal cost for the semidefinite
relaxation, J�, is in fact equal to the optimal cost of the OPF
problem. Moreover, the rank-one solution returned from the
linearization-minimization algorithm can be used to construct
an optimal solution for the non-convex OPF problem. These
results verify that primal/dual solvers will fail to return rank-
one optimal solutions for the naive semidefinite relaxation
even when such solutions exist (c.f. Theorem 2.1). The values
of J in the last column denote the upper bound on the
optimal cost of the OPF problem given by the non-convex
solver MATPOWER [3]. The last result in Table III is of
particular interest. This example is a modified IEEE 14
Bus system (14A) for which the linearization-minimization
algorithm yields a rank-one globally optimal solution with
a cost 12.4% lower than the sub-optimal solution obtained
with MATPOWER. This example was constructed from the
standard IEEE 14 Bus test case [22] by tightening a subset
of the line capacity constraints. A precise description can be
found in [23].

TABLE III: Power system examples with hidden rank-one opti-
mal solutions. Precise systems descriptions can be
obtained from (9 bus [24]), (30 bus [25]) (118 bus
[22]), (14A bus [23]).

Syst. rank(X
0

) rank(X
0

) Iter. J� J

9 8 1 3 5296.7 5296.7
30 9 1 3 576.9 576.9
118 236 1 100 129661 129661

14A 26 1 3 8092.8 9093.8

B. Alternating-Bisection Method

For certain problems, the linearization-minimization al-
gorithm fails to uncover a rank-one point in F – i.e.
rank(X

0

) > 1. In such cases, one of two scenarios could
be at play. Either the optimal face F of the semidefinite
relaxation does not possess a rank-one matrix or the rank
minimization heuristic may simply fail in recovering a rank-
one points in F when they do in fact exist. Table IV
provides three representative examples of such cases. For
each example, the rank minimization heuristic is able to
find a lower rank matrix (on F) than that achieved by the

naive semidefinite relaxation. However, the iteration does
not converge to a rank-one solution. In each case there is a
non-zero gap between the cost achieved for the semidefinite
relaxation, J�, and the MATPOWER upper bound obtained
for the original OPF problem, J .

The alternating bisection-minimization method is applied to
the cases in Table IV. Figure 1 depicts the cost of a feasible
point produced at every step of the bisection for the examples
considered in Table IV. The red diamonds denote the iterates
achieving rank-one feasible points, while the black circles
denote iterates corresponding to high rank feasible points.
We observe in Figure 1, that in the case of the three and
five bus examples, the minimum cost obtained by a rank-
one feasible point through bisection coincides with the cost
produced by MATPOWER. This may lead one to believe
that the optimal face F of the semidefinite relaxation may
not admit a rank-one feasible point. On the other hand, for
the modified IEEE 14 Bus example (14B), the proposed
bisection-minimization heuristic obtains a rank-one feasible
point that yields a substantially lower cost than the upper
bound J obtained from MATPOWER. More precisely, the
minimum cost rank-one point derived from the alternating
bisection-minimization method is within 0.1266% of the
relaxed lower bound J�, as compared to 4.8326% for the
MATPOWER solution. We refer the reader to Remark 6 for
a discussion on the role of mild constraint relaxations in
deriving nearly optimal rank-one solutions.

To summarize, we observe that in many cases the iterative
linearization-minimization algorithm successfully uncovers a
hidden rank-one point that is also globally optimal for the
original OPF problem. If the rank minimization algorithm
fails to uncover a rank-one optimal point, then the alternating
bisection-minimization method can be applied. In this case,
a rank-one feasible solution is obtained that yields a cost
that is no greater than that achieved by MATPOWER – and
for certain systems, achieves a substantially lower cost than
MATPOWER.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper considered the non-convex Optimal Power Flow
(OPF) problem and the corresponding semidefinite relax-
ation. For certain power systems and cost structures, the
naive semidefinite relaxation may fail to yield low rank

SDP		
cost		

MATPOWER	
cost		

IEEE test  
systems 

12.4%	lower	cost	than	solu=on	from	
nonlinear	solver	MATPOWER	

Potential benefits 

[Louca, Seiler, Bitar 2013] 



Potential benefits 

Our research 
n  Computation: developed relaxation theory that exploits 

hidden convexity structure 
n  Scalability: developed distributed algorithms 

implementable by DERs based on relaxation theory 
n  Benefits: captures values to both utility and users 

optimized baseline 

peak load reduction: 8% 
energy cost reduction: 4% 



exactness 

Convex relaxations of OPF 

distributed 
OPF 

Kim, Baldick 1997 
Dall’Anese et al 2012 
Lam et al 2012 
Kraning et al 2013 
Devane, Lestas 2013 
Sun et al 2013 
Li et al 2013 
Peng, Low 2014 

moment/SoS, 
based 

relaxation 
Molzahn, Hiskens 2014 
Josz et al 2014 
Ghaddar et al 2014 

multiphase 
unbalanced 

Dall’Anese et al 2012 
Gan, Low 2014 

applications 

B&B, 
rank min, 

QC relaxation,  

Phan 2012 
Gopalakrishnan 2012 
Louca et al 2013 
Hijazi et al 2013 
Andy Sun 2016 

ext refs in tutorial: 
Low, TCNS 2014 

http://netlab.caltech.edu 

semidefinite 
relaxations 



Challenges 

Challenges for practical application 
n  Relaxation may not be exact 

o  Practical application demands a feasible solution 
o  No known sufficient condition for exact relaxation 

for general mesh (transmission) networks 
n  Semidefinite relaxation (as is) is not scalable 



Distributed AC OPF 
for scalability 

Peng (Google) 

Gan & L, PSCC 2014 
Peng & L, TSG 2017 

Gan (FB) 



Summary: 3 ideas 

1. Solve semidefinite relaxation using branch-
flow model (BFM) 

n  BFM much more numerically stable 
n  assume relaxation is exact (radial nk) 

2. Decouple into operations at each bus 
n  introduce decoupling variables and consensus 

constraints 
n  message passing between neighboring buses 

3. Apply ADMM 
n  derive closed-form solution or 6x6 eigenvalue 

problem for each ADMM subproblem 
n  greatly speeds up each ADMM iteration  

 



Summary: simulations 

BFM is much more numerically stable 
SDP relaxations are exact (wye loads) 

numerically 
unstable 

numerically  
stable 

network

BIM-SDP BFM-SDP

value time ratio value time ratio

IEEE 13-bus 152.7 1.05 8.2e-9 152.7 0.74 2.8e-10

IEEE 34-bus -100.0 2.22 1.0 279.0 1.64 3.3e-11

IEEE 37-bus 212.3 2.66 1.5e-8 212.2 1.95 1.3e-10

IEEE 123-bus -8917 7.21 3.2e-2 229.8 8.86 0.6e-11

Rossi 2065-bus -100.0 115.50 1.0 19.15 96.98 4.3e-8

[Gan & Low 2014 PSCC] 



Summary: comparison (single phase) 

Network 
size N 

Total 
Time S 

Avg time 
( = S/N )  

Centralized 
(CPU) 

Centralized 
(elapsed) 

IEEE 123 
buses 

39.5 sec 0.32 sec 1.18 sec 11.4 sec 

Rossi 2,065 1,153 0.56 14.38 157.3 
1,313 471 0.36 8.88 91.2 
792 226 0.29 5.13 50.3 
363 66 0.18 3.08 24.5 
108 16 0.14 0.78 6.5 

footnote: “Centralized” times reported by CVS in Matlab 
n  Solving SOCP using CVX (not ADMM) 
n  “CPU” time excludes problem set up before calling convex solver 
n  “elapsed” time includes setup time in CVX 

o  Parallel implementation of our distributed algorithm 
is much faster than solving OPF centrally 



Summary: simulations 
Network (unbalanced) 

n  IEEE 13, 34, 37, 123 bus systems 
Objective 

n  loss minimization 

Convergence time (computation only) 

Network Diameter Iterations Total Time Avg Time 
13 Bus 6 289 17.11 1.32 
34 Bus 20 547 78.34 2.30 
37 Bus 16 440 75.67 2.05 
123 Bus 30 608 306.3 2.49 



Details: 3 ideas 

1. Solve semidefinite relaxation using branch-
flow model (BFM) 

n  BFM much more numerically stable 
n  assume relaxation is exact (radial nk) 

2. Decouple into operations at each bus 
n  introduce decoupling variables and consensus 

constraints 
n  message passing between neighboring buses 

3. Apply ADMM 
n  derive closed-form solution or 6x6 eigenvalue 

problem for each ADMM subproblem 
n  greatly speeds up each ADMM iteration  

 



DistFlow model (Baran & Wu 1989) 

min
x

 f (x)   subject to   DistFlow equations

                                    operation constraints  g(x) ≤ 0

OPF 

nonconvex ! 

SOCP relaxation (Farivar & Low 2013) 
•  Equivalent re-formulation of DistFlow equations (linear + quadratic term) 
•  SOCP relaxation is often exact, yielding global optimal 
•  Much more numerically stable than bus injection model 

1402 

II. FORMULATION OF THE PROBLEM 
In this section, the network reconfiguration problems for both loss 

reduction and load balancing are formulated and their similarities are 
pointed out. 

2.1 Problem Statement 
To simplify the presentation, we will represent the system on a per 

phase basis and the loads along a feeder section as constant P,Q loads 
placed at the end of the l ies.  We also assume that every switch is associ- 
ated with a line in the system. For example, we assume that the system of 
Fig.1 can be translated to an equivalent network shown in Fig.2. 

ss1 m 
Figure 2: One line diagram of a small distribution system 

In the figure, solid branches represent the lines that are in service and con- 
stitute the base radial configuration. Dotted branches (branches 20,2 1,22) 
represent the lines with open switches. 

The base network can be reconfigured by first closing an open 
branch, say branch 21 in the figux. Since this switching will create a loop 
in the system, (composed of branches 1,2,3,21, 11,  10,9,8,7, and 15), a 
branch in the loop containing a switch has to be opened, say branch 7, to 
restore the radial structure of the system. As a result of this switching, the 
loads between the branches 7-1 1 will be transferred from one feeder to the 
Other. We will use the same terminology used in [7] and call t h i s  basic 
switching operation a brunch exchange between branches 21 and 7. In 
general, as illustrated in the introduction, more complex switching 
schemes are possible; we will simulate such cases by applying several 
branch exchanges successively. 

The load transfer between different substations can be simulated by 
branch-exchange type switchings too. In this case, substation nodes (node 
SSI and SS2 in the figure) will be considered as a common node although 
they are not the same node. The methods to be presented in this paper can 
handle both cases. This is an important property of the proposed methods. 

The network rewnfiguration problems for loss reduction and load 
balancing involve the same type of operation, namely the load transfer 
between the feeders or substations by changing the positions of switches. 
They only differ in their objective. Other factors, such as the voltage 
profile of the system, capacities of the IinWtransformers, reliability con- . 
straints can be considered as constraints. 

To state these problems as optimization pmblems, note that the 
radial configuration corresponds to a "spanning tree" of a graph represent- 
ing the network topology. Thus, we have a so-called minimal spanning 
tree problem which can be stated as follows. Given a graph, 6nd a span- 
ning tree such that the objective function is minimized while the following 
constraints are satisfied: (i) voltage constraints, (ii) capacity constrains of 
liies/transformers. (iii) reliability constraints. 

This is a combinatorial optimization problem since the solution 
involves the consideration of all possible spanning tms. 

2.2 Power Flow Equations 
To calculate the terms in optimization problem defined in the previous 

section, we will use a set of power flow equations that are structurally rich 
and conducive to computationally efficient solution schemes [13]. To 
illustrate them, consider the radial network in Fig.3. 

...... T'1k..'....- i-1 i i+ 1 (-* 
P,.Q, - P ; f Q r - i  mi i+i*Qi+i pn 'Qn 

PL ,Qti 

Figure 3 : One line diagram of a radial network 

We represent the lines with impedances zl = r, + jx, , and loads as constant 
power sinks, SL =PL + jQL . 

Power flow in a radial distribution network canhe described by a set of 
recursive equations, called D i s t F h  branch equatwns , that use the real 
power, reactive power, and voltage magnitude at the sendhg end of a 
branch - Pi,Qi,Vi respectively to express the same quantities at the 
receiving end of the branch as follows. 

p .2+Q 2 

Vi' Pi,] =p i  - ri - - "LI+I (1.i) 

P?+Qi' 
Viz 

VLl  = Vi2 - 2(ri Pi  + xi Q i )  + (r? + x?)- (1 .iii) 

Hence, if P o  .Qo , Vo at the Erst node of the network is known or 
estimated, then the same quantities at the other nodes can be calculated by 
applying the above branch equations successively. We shall =fer to this 
procedure as a forward update. 

DistFlow branch equations can be written backward too. i.e., by using 
the real power, reactive power, and the voltage magnitude at the receiving 
end of a branch, P i ,  Q, ,  Vi to express the same quantities at the sending 
end of the branch. The result is the following recursive equations, called 
the backward branch equations, 

P l - l = P l  + f i T + P P ,  pl'2+Q,2 (2.i) 
v, 

(2.ii) 

where, PI' = Pi + Pti , Q; = Q, + QL; . 
Similar to forward update, a backward update can be defined: start 

updating from the last node of the network assuming the variables 
Pn , Qn , Vn at that point are given and proceed backwards calculating the 
same quantities at the other nodes by applying Eq.(2) successively. Updat- 
ing process ends at the first node (node 0) and will provide the new esti- 
mate of the power injections into the network, PO .Qp 

Note that by applying backward and forward update schemes succes- 
sively one can get a power flow solution as explained in [131. 

2 3  Calculation of the Objective Terms 
Having a network model, now we can express the power loss and 

measure the load balance in the system in terms of system variables. 
For loss reduction, the objective is to minimize the total i2r losses in 

the system, which can be calculated as follows. 

(3) 

This will be the objective function, cp of network reconfiguration for loss 
reduction. 

For load balancing, we will use the ratio of complex power at the 
sending end of a branch, SI over its kVA capacity, Si"" as a measure of 
how much that branch is loaded. The branch can be a transformer. a tie- 
line with a sectionaliiing switch or simply a line section. Then we define 
the load 'balance index for the whole system as the sum of these measures, 
i.e., 

This will be the objective function, cb of load balancing. 
As noted before, the two problems are similar. They both require the 

same data (system parameters and load) and load flow calculation to 
evaluate the objectives for a given network topology. 

BFM and relaxations 
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II. FORMULATION OF THE PROBLEM 
In this section, the network reconfiguration problems for both loss 

reduction and load balancing are formulated and their similarities are 
pointed out. 

2.1 Problem Statement 
To simplify the presentation, we will represent the system on a per 

phase basis and the loads along a feeder section as constant P,Q loads 
placed at the end of the l ies.  We also assume that every switch is associ- 
ated with a line in the system. For example, we assume that the system of 
Fig.1 can be translated to an equivalent network shown in Fig.2. 

ss1 m 
Figure 2: One line diagram of a small distribution system 

In the figure, solid branches represent the lines that are in service and con- 
stitute the base radial configuration. Dotted branches (branches 20,2 1,22) 
represent the lines with open switches. 

The base network can be reconfigured by first closing an open 
branch, say branch 21 in the figux. Since this switching will create a loop 
in the system, (composed of branches 1,2,3,21, 11,  10,9,8,7, and 15), a 
branch in the loop containing a switch has to be opened, say branch 7, to 
restore the radial structure of the system. As a result of this switching, the 
loads between the branches 7-1 1 will be transferred from one feeder to the 
Other. We will use the same terminology used in [7] and call t h i s  basic 
switching operation a brunch exchange between branches 21 and 7. In 
general, as illustrated in the introduction, more complex switching 
schemes are possible; we will simulate such cases by applying several 
branch exchanges successively. 

The load transfer between different substations can be simulated by 
branch-exchange type switchings too. In this case, substation nodes (node 
SSI and SS2 in the figure) will be considered as a common node although 
they are not the same node. The methods to be presented in this paper can 
handle both cases. This is an important property of the proposed methods. 

The network rewnfiguration problems for loss reduction and load 
balancing involve the same type of operation, namely the load transfer 
between the feeders or substations by changing the positions of switches. 
They only differ in their objective. Other factors, such as the voltage 
profile of the system, capacities of the IinWtransformers, reliability con- . 
straints can be considered as constraints. 

To state these problems as optimization pmblems, note that the 
radial configuration corresponds to a "spanning tree" of a graph represent- 
ing the network topology. Thus, we have a so-called minimal spanning 
tree problem which can be stated as follows. Given a graph, 6nd a span- 
ning tree such that the objective function is minimized while the following 
constraints are satisfied: (i) voltage constraints, (ii) capacity constrains of 
liies/transformers. (iii) reliability constraints. 

This is a combinatorial optimization problem since the solution 
involves the consideration of all possible spanning tms. 

2.2 Power Flow Equations 
To calculate the terms in optimization problem defined in the previous 

section, we will use a set of power flow equations that are structurally rich 
and conducive to computationally efficient solution schemes [13]. To 
illustrate them, consider the radial network in Fig.3. 

...... T'1k..'....- i-1 i i+ 1 (-* 
P,.Q, - P ; f Q r - i  mi i+i*Qi+i pn 'Qn 

PL ,Qti 

Figure 3 : One line diagram of a radial network 

We represent the lines with impedances zl = r, + jx, , and loads as constant 
power sinks, SL =PL + jQL . 

Power flow in a radial distribution network canhe described by a set of 
recursive equations, called D i s t F h  branch equatwns , that use the real 
power, reactive power, and voltage magnitude at the sendhg end of a 
branch - Pi,Qi,Vi respectively to express the same quantities at the 
receiving end of the branch as follows. 

p .2+Q 2 

Vi' Pi,] =p i  - ri - - "LI+I (1.i) 

P?+Qi' 
Viz 

VLl  = Vi2 - 2(ri Pi  + xi Q i )  + (r? + x?)- (1 .iii) 

Hence, if P o  .Qo , Vo at the Erst node of the network is known or 
estimated, then the same quantities at the other nodes can be calculated by 
applying the above branch equations successively. We shall =fer to this 
procedure as a forward update. 

DistFlow branch equations can be written backward too. i.e., by using 
the real power, reactive power, and the voltage magnitude at the receiving 
end of a branch, P i ,  Q, ,  Vi to express the same quantities at the sending 
end of the branch. The result is the following recursive equations, called 
the backward branch equations, 

P l - l = P l  + f i T + P P ,  pl'2+Q,2 (2.i) 
v, 

(2.ii) 

where, PI' = Pi + Pti , Q; = Q, + QL; . 
Similar to forward update, a backward update can be defined: start 

updating from the last node of the network assuming the variables 
Pn , Qn , Vn at that point are given and proceed backwards calculating the 
same quantities at the other nodes by applying Eq.(2) successively. Updat- 
ing process ends at the first node (node 0) and will provide the new esti- 
mate of the power injections into the network, PO .Qp 

Note that by applying backward and forward update schemes succes- 
sively one can get a power flow solution as explained in [131. 

2 3  Calculation of the Objective Terms 
Having a network model, now we can express the power loss and 

measure the load balance in the system in terms of system variables. 
For loss reduction, the objective is to minimize the total i2r losses in 

the system, which can be calculated as follows. 

(3) 

This will be the objective function, cp of network reconfiguration for loss 
reduction. 

For load balancing, we will use the ratio of complex power at the 
sending end of a branch, SI over its kVA capacity, Si"" as a measure of 
how much that branch is loaded. The branch can be a transformer. a tie- 
line with a sectionaliiing switch or simply a line section. Then we define 
the load 'balance index for the whole system as the sum of these measures, 
i.e., 

This will be the objective function, cb of load balancing. 
As noted before, the two problems are similar. They both require the 

same data (system parameters and load) and load flow calculation to 
evaluate the objectives for a given network topology. 

BFM and relaxations 

But DistFlow model is single-phase ! 

How to generalize to 3-phase unbalanced system? 
•  Preserve simple analytical structure of 1-phase model 
•  Preserve superior numerical stability of 1-phase model 



DistFlow model 
for 1-phase 

equivalent 
re-formulation 

SOCP 
relaxation 

generalization 
to 3-phase 

SDP 
relaxation 

Dall’Anese et al 2013 TSG 
Gan & Low 2014 PSCC (above approach) 

radial, multiphase, wye  +  delta 

Multiphase generalization 

Zhao et al 2017 IREP 

distributed 
solution 

distributed 
solution 

Peng & Low 2017 TSG 
Peng & Low 2015 CDC 



3phase model 
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Auxiliary variables: 

 
Ohm’s law: 

Power balance: 
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BFM: 3phase (wye) 
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3x3 rank-1 matrices 



Auxiliary variables: 
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Auxiliary variables: 

 
Ohm’s law: 

Power balance: 
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OPF (3phase, wye) 

branch 
flow 

model 

non-convex 



SDP relaxation (3phase, wye) 

branch 
flow 

model 

6x6: semidefinite 
constraint 

Gan, Low 2014 PSCC 



Partition & decouple 

min
x,y

X

i2N
f

i

(x
i0)

s.t.
X

j2Ni

Aijyji = 0 i 2 N

yji :

xi := (vi, si, `iAi ,SiAi)

decoupling vars 

power balance & voltage eqtns 

xi0 2 Ki0 i 2 N
xi1 2 Ki1 i 2 N

PSD & injection constraints 
voltage magnitude constraints 

xi1 = yii i 2 N

xi0 = yij j 2 Ni i 2 N consensus constraints 
(coupling across i) 



� : Lagrangian multiplier for coupling constraint 

augmented Lagrangian: 

ADMM update at each iteration k 

min
x,y

f(x) + g(y)

s.t. x 2 K
x

, y 2 K
y

x = y

x

k+1 = arg min
x2K

x

L

⇢

(x, yk,�k)

y

k+1 = arg min
y2Ky

L⇢(x
k+1

, y,�

k)

�

k+1 = �

k + ⇢(xk+1 � y

k+1)

ADMM 

Lρ (x, y,λ) := f (x)+ g(y)+λ
T (x − y)+ ρ

2
(x − y)HΛ(x − y)

reduce min to 
•  QP: closed-form soln 
•  SDP: 6x6 eigenvalue  
     problems  

[Peng & L, 2016] 



ADMM 

Greatly speeds up each ADMM iteration 
n  much faster than standard iterative solution 

for each ADMM subproblem 

per-bus 
computation time 

x-update z-update 

Our algorithm 1.7 x 10-4 sec 5.1 x 10-4 sec 
CVX 2 x 10-1  sec 3 x 10-1  sec 

speedup 1,176x 588x 

per-bus computation time : time to solve 1 sample ADMM iteration for Rossi circuit  
with 2,065 buses, divided by 2,065, for both algorithms (single-phase) 



Challenges 
Challenges for practical application 

n  ADMM too slow for high precision solution 
n  Relaxation (feasible power flow) 

o  Wye loads: empirically exact but no proof 
o  Delta loads: empirically inexact 

n  Offline (distributed) algorithm 
o  Intermediate iterates are not feasible and cannot be 

applied to network 

which determines the update of (y1, . . . , y4). In Appendix I,
we derive a close form solution for this problem. After the
z-update step, we update the Lagrange multipliers for the
relaxed constraints as (8c). Both the z-update and multiplier
update steps only involve local variables of an agent and no
communication is required.

Finally, we specify the stopping criteria for the algorithm.
Empirical results show that the the solution is accurate
enough when both the primal residual rk defined in (9a)
and the dual residual sk defined in (9b) are below 10

�4
p
N ,

where N is the number of buses. The pseudo code for the
algorithm is summarized in Table I.

TABLE I: Distributed algorithm of OPF

Distributed Algorithm of OPF
Input: network T , power injection region S

i

, voltage region (v
i

, v

i

),
line impedance z

i

Output: voltage v, power injection s

1. Initialize the variables with any number.
2. Iterate the following step until both the primal residual sk (9a) and
the dual residual rk (9b) are below 10�4

p
N .

a. In the x-update, each agent i solves (14) to update x.
b. In the z-update, each agent i solves (16) to update z.
c. In the multiplier update, update �, µ, � by (8c).

IV. CASE STUDY

To demonstrate the scalability of the distributed algorithm
proposed in section III, we test it on the model of a 2,065-
bus distribution circuit in the service territory of the Southern
California Edison. There are 1,409 household loads, whose
power consumptions are within 0.07kw–7.6kw and 142 com-
mercial loads, whose power consumptions are within 5kw–
36.5kw. There are 135 rooftop PV panels, whose nameplates
are within 0.7–4.5kw, distributed across the 1,409 houses.

The network is unbalanced three phase. We assume that
the three phases are decoupled such that the network be-
comes identical single phase network. The voltage magnitude
at each load bus is allowed within [0.95, 1.05] per unit (pu),
i.e. v

i

= 1.052 and v
i

= 0.952 for i 2 N+. The control
devices are the rooftop PV panels whose real and reactive
power injections are controlled. The objective is to minimize
power loss across the network, namely f

i

(p
i

, `
i

) = `
i

r
i

for i 2 N+ in (2). Each bus is an agent and there are
2,065 agents in the network that solve the OPF problem in
a distributed manner.

The algorithm is implemented in Matlab 2013a and run on
Macbook pro 2013 with i5 dual core processor. We mainly
focus on the following aspects:

• Solution feasibility: the primal residual rk defined in
(9a) measures the feasibility of the solution for ADMM
[20]. In our algorithm, (12f) are relaxed and rk =p

k(x(1)
)

k � zkk2 + k(x(2)
)

k � zkk2 with respect to
the iterations k.

• Optimality: the dual feasibility error sk defined in (9b)
measures the optimality of the solution for ADMM [20].
In our algorithm, the dual residual sk =

p
2⇢kzk �

zk�1k with respect to the iterations k.

(a) Primal and dual residual (b) Objective value

Fig. 4: Simulation results for 2065 bus Rossi circuit.

• Computation time: the proposed distributed algorithm
is run on a single machine. We can divide the total
time by the number of agents to roughly estimate
the time required for each agent if the algorithm is
run on distributed severs (excluding the communication
overhead).

The stopping criteria is that both the primal and dual
residual are below 10

�4
p
N and Figure 4a illustrates the

evolution of rk/
p
N and sk/

p
N over iterations k. The

stopping criteria are satisfied after 1, 114 iterations. The
evolution of the objective value is illustrated in Figure 4b.
It takes 1,153s to run 1,114 iterations on a single computer.
Then the average time spent by each agent is roughly 0.56s
(excluding communication overhead) if we implement the
algorithm in a distributed manner.

TABLE II: Statistics of different networks

Network Diameter Iteration Total Time(s) Avg time(s)
2065Bus 64 1114 1153 0.56
1313Bus 53 671 471 0.36
792Bus 54 524 226 0.29
363Bus 36 289 66 0.18
108Bus 16 267 16 0.14

To understand the key factor that affects the convergence
rate, we simulate the algorithm on different networks (that
are subnetworks of the 2,065-bus system) and some statistics
are given in Table II. For simplicity, we assume the average
time T spent by each agent takes the linear form T = ↵N+

�D, where N is network size and D is network diameter.
Using the data in Table II, the parameters ↵ = 9.8 ⇥ 10

�7,
� = 8.6⇥ 10

�3 give the least square error. This means that
the convergence rate is mainly determined by the network
diameter, independent of the network size.

Finally, we show the advantage of deriving close form
expression by comparing the computation time of solving
the subproblems between off-the-shelf solver (CVX) and our
algorithm. In particular, we compare the average computation
time of solving the subproblem in both the x-update and the
z-update step. In the x-update step, the average time required
to solve the subproblem is 1.7⇥10

�4s for our algorithm but
0.2s for CVX. In the z-update step, the average time required
to solve the subproblem is 5.1⇥10

�4s for our algorithm but
0.3s for CVX. Thus, each ADMM iteration only takes about
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OPF 

power flow equations 

min    c0 (y)+ c(x)
over   x,  y
s. t.    F(x, y) = 0
         y ≤ y
         x ∈ X  := x ≤ x ≤ x{ }

operational constraints 

capacity limits controllable  
devices 

uncontrollable 
state 
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power flow equations 

min    c0 (y)+ c(x)
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s. t.    F(x, y) = 0
         y ≤ y
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capacity limits 



OPF 

power flow equations 

min    c0 (y)+ c(x)
over   x,  y
s. t.    F(x, y) = 0
         y ≤ y
         x ∈ X  := x ≤ x ≤ x{ }

operational constraints 

capacity limits 

Assume:  ∂F
∂y

≠ 0        ⇒       y(x)   over  X



Static OPF 

x(t +1)  =  x(t)−η ∂f
∂x

(t)
#

$%
&

'(X
y(t)       =   y(x(t))

gradient projection algorithm: 

active control 

law of physics 

min      f (x, y(x);  µ)
over     x ∈ X

[Gan & Low, JSAC 2016] 



Online (feedback) perspective 

Network:  power flow solver
    y(t) : F(x(t),  y(t)) = 0

DER : gradient update
x(t+1) = G(x(t),  y(t))

control 
x(t) 

measurement, 
communication 

y(t) 

physical  
network 

cyber  
network 

•  Explicitly exploits network as power flow solver 
•  Naturally tracks changing network conditions 



Drifting OPF 

min
x

   c0 (y(x))+ c(x)

s. t.    y(x) ≤ y
         x ∈ X

min
x

   c0 (y(x),γ t )+ c(x,γ t )

s. t.    y(x,γ t ) ≤ y
         x ∈ X

drifting  
OPF 

static 
OPF 



Drifting OPF 

min      ft (x, y(x);  µt )
over     x ∈ Xt

x(t +1)  =  x(t) −  η H (t)( )−1 ∂ft
∂x

(x(t))
#

$%
&

'(Xt
y(t)       =   y(x(t))

active control 

law of physics 

Quasi-Newton algorithm: 

[Tang, Dj & Low, 2017] 



Tracking performance 

Theorem 
 

error :=      1
T

xonline (t)− x*(t)
t=1

T

∑

error  ≤   λM
λm

⋅
ε

1−ε
⋅

1
T

x*(t)− x*(t −1) +Δt( )
t=1

T

∑

avg rate of drifting 

control error 
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Theorem 
 

error :=      1
T

xonline (t)− x*(t)
t=1
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∑
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⋅
1
T

x*(t)− x*(t −1) +Δt( )
t=1

T

∑ +δ

avg rate of drifting 
•  of optimal solution 
•  of feasible injections 
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error in Hessian approx 
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Tracking performance 

Theorem 
 

error :=      1
T

xonline (t)− x*(t)
t=1

T

∑

error  ≤   ε
λM / λm −ε

⋅
1
T

x*(t)− x*(t −1) +Δt( )
t=1

T

∑ +δ

“initial distance” from x*(t)



Implementation 

Implement L-BFGS-B 
n  More scalable 
n  Handles (box) constraints X 

Simulations 
n  IEEE 300 bus 

 



Tracking performance 

IEEE 300 bus 



Tracking performance 
7

Fig. 3. The absolute and relative gap between the objective values of the real-time operations x̂(t) and the optimal solutions x

⇤(t).

0.376 sec. We can see that the proposed implementation of the
real-time OPF algorithm is quite computationally efficient.

Fig. 4. Histogram of computation times for each real-time update.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a real-time OPF algorithm based
on quasi-Newton methods. This algorithm utilizes real-time
measurement data and performs suboptimal updates on a
faster timescale than traditional OPF. We studied its tracking
performance, and also proposed a specific implementation
based on the L-BFGS-B algorithm. Simulations showed that
the proposed algorithm can track the optimal operations well
and is computationally efficient.

There still remain a number of issues in designing real-
time OPF algorithms. Currently the updates are carried out
every 6 seconds, which could be too short for us to neglect
the dynamics for large networks. To extend the time between
each updates, we need to improve the algorithm so that it will
still work when larger changes in loads and generations are
allowed.

One possible direction is to find more accurate methods of
estimating the Hessian. The L-BFGS-B method turns out to

work well as simulations have shown, but we have also found
some difficult situations where more accurate estimate of the
Hessian is needed.

Another possible direction is to introduce dual variables
instead of penalty functions. It has been observed that by
introducing dual variables, one can usually achieve better
convergence and smaller constraint violations, and potentially
avoid numerical issues. We are especially interested in com-
bining primal-dual methods with quasi-Newton methods.

Besides improving the tracking performance of the al-
gorithm, we are also interested in developing a distributed
algorithm for real-time OPF. As the number of controllable
devices increases, the communication between controllable
devices and the control center will become a bottleneck, and
distributed algorithms will be much favored.

APPENDIX A
PROOF OF THEOREM 1

We write the box constraint (5c)-(5e) as l(t)  x(t)  u(t).
First we note that, by the definition of �M and �m, we have

kxk2
Bt

= x

T
Btx  �Mx

T
Wx = �Mkxk2

W

,

kxk2
Bt

= x

T
Btx � �mx

T
Wx = �mkxk2

W

,

for any vector x and any t 2 {1, . . . , T}.
At the beginning of time t, the initial point is x0(t) =

Ptˆx(t�1), where Pt is the projection onto the current feasible
control region l(t)  x(t)  u(t), and ˆ

x(t�1) is the previous
operation. Let

mt(x) := g

T
t (x� x0(t))

+

1

2

(x� x0(t))
T
Bt(x� x0(t)).

Then the updated operation ˆ

x(t) is the optimal of

min

l(t)xu(t)
mt(x).

IEEE 300 bus 



Key message 

Large network of DERs 
n  Real-time optimization at scale 
n  Computational challenge: power flow solution 

 

Online optimization [feedback control] 

n  Network computes power flow solutions in real 
time at scale for free 

n  Exploit it for our optimization/control 
n  Naturally adapts to evolving network conditions 

 

Examples 
n  Slow timescale: OPF 
n  Fast timescale: frequency control 

 
 



Challenges 
Challenges for practical application 

n  Distributed implementation 
n  Tracking with lower update speed 
n  Not all buses have sensors/controllers 



Optimal placement  
dealing with limited sensing/control 

Guo (Caltech) 

Guo & Low CDC 2017 



Summary 

Characterization of controllability and 
observability 

n  of swing dynamics 
n  in terms spectrum of graph Laplacian matrix 

Implications on optimal placement of 
controllable DERs and sensors 

n  set covering problem 



Network model 
Pi
m

i

j
Pij

di + d̂iswing dynamics: 

of buses with controllable loads/sensors. Condition 1) encodes
information on the graph symmetry and is shown to hold
for almost all practical systems. Condition 2) captures how
buses interact with each other through the network and can be
verified using the eigenvectors of the graph Laplacian matrix.
We would like to remark that our results do not explicitly
hint on how optimal decentralized control scheme should be
designed. Indeed, the standard control associated with our
results is typically centralized and open-loop. The focus of
this work is more towards a fundamental understanding on
structural properties of such system.

The rest of the paper is organized as follows. We first review
the system model and relevant spectral graph theory concepts
in Section II. In Section III, we present the exact conditions
for the system to be controllable. The practical interpretations
of these conditions are discussed in Section IV. The parallel
results in the system observability are given in Section V. We
present two applications of our characterizations in Section
VI. The first application as presented in Section VI-A is more
analytical, which reduces the problem of optimal placement
for controllable loads and sensors to a set cover problem.
The second application as presented in Section VI-B is an
evaluation in the IEEE 39-bus New England interconnection
test system, showing how a single well chosen critical bus
based on our theory is capable of regulating the frequency of
the whole grid. We conclude in Section VII.

II. MODEL AND PROBLEM SETUP

In this section, we present the system model as adopted
in [5]–[8] and review relevant concepts from spectral graph
theory. We also refine the existing models to include the
limited coverage of controllable loads and sensors.

Let R denote the set of real numbers. For a set N , its
cardinality is denoted as |N |. We reserve caligraphic symbols
like F ,U ,O for sets related to the physical system (for in-
stance buses with controllable loads). Uppercase symbols like
A,B,C usually refer to matrices, but can also refer to a vector
space or a set in the proofs. For two matrices A,B with proper
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and [A;B] means the concatenation of A,B in a column.
A variable without subscript usually denotes a vector with
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inverse respectively, provided they are properly defined. For
a time-dependent signal !(t), we use !̇ to denote its time
derivative d!

dt

. For any vector x, we use diag(x) to denote the
diagonal matrix with entries from x as the main diagonal.

We use the graph G = (N , E) to describe the power
transmission network, where N = {1, . . . , n} is the set of
buses and E ⇢ N ⇥N denotes the set of transmission lines.
The terms bus/node and line/edge are used interchangeably
in this paper. We assume without loss of generality that G is
connected and simple. An edge in E is denoted either as e or
(i, j). We further assign an arbitrary orientation over E so that
if (i, j) 2 E then (j, i) /2 E . For any subset of buses S 2 N ,
we denote its characteristic function using the corresponding
symbol 1S . Let n = |N | ,m = |E| be the number of buses

and transmission lines, respectively. The incidence matrix of
G is a n⇥m matrix C defined as
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For each bus j 2 N , we denote the frequency deviation as
!

j

and denote the inertia constant as M

j

> 0. The symbol
P

m

j
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At each bus, there are three types of additional components
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and the level of d
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set of buses with controllable loads is denoted as U .
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. We do not allow direct control to
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for almost all practical systems. Condition 2) captures how
buses interact with each other through the network and can be
verified using the eigenvectors of the graph Laplacian matrix.
We would like to remark that our results do not explicitly
hint on how optimal decentralized control scheme should be
designed. Indeed, the standard control associated with our
results is typically centralized and open-loop. The focus of
this work is more towards a fundamental understanding on
structural properties of such system.

The rest of the paper is organized as follows. We first review
the system model and relevant spectral graph theory concepts
in Section II. In Section III, we present the exact conditions
for the system to be controllable. The practical interpretations
of these conditions are discussed in Section IV. The parallel
results in the system observability are given in Section V. We
present two applications of our characterizations in Section
VI. The first application as presented in Section VI-A is more
analytical, which reduces the problem of optimal placement
for controllable loads and sensors to a set cover problem.
The second application as presented in Section VI-B is an
evaluation in the IEEE 39-bus New England interconnection
test system, showing how a single well chosen critical bus
based on our theory is capable of regulating the frequency of
the whole grid. We conclude in Section VII.
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diagonal matrix with entries from x as the main diagonal.

We use the graph G = (N , E) to describe the power
transmission network, where N = {1, . . . , n} is the set of
buses and E ⇢ N ⇥N denotes the set of transmission lines.
The terms bus/node and line/edge are used interchangeably
in this paper. We assume without loss of generality that G is
connected and simple. An edge in E is denoted either as e or
(i, j). We further assign an arbitrary orientation over E so that
if (i, j) 2 E then (j, i) /2 E . For any subset of buses S 2 N ,
we denote its characteristic function using the corresponding
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such loads and denote the set of buses with frequency
sensitive loads as F .

3) Sensor. Such component measures the local frequency
deviation !

j

. The set of buses equipped with sensors is
denoted as S .

Summarizing the above different components, the swing and
network dynamics is given by

�M

j

!̇

j

= 1F (j) ˆdj + 1U (j)dj � P

m

j

+

X

e2E
C

je

P

e

, j 2 N

˙

P

ij

= B

ij

(!

i

� !

j

), (i, j) 2 E
and the system state is observed through

y

j

= 1S(j)!j

, j 2 N
Readers are referred to [6] for more detailed justification and
derivation of this model.

Now using x to denote the system state x = [!;P ], and
putting F , U , S, M , D and B to be the diagonal matrices
with 1F (j), 1U (j), 1S(j), Mj

, D
j

and B

ij

as diagonal entries
respectively, we can rewrite the system dynamics in the state-
space form
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This implies that L is a positive semidefinite matrix and
thus diagonalizable. It is well-known that rank(L) = n � 1

for a connected graph [16] and therefore 0 is a simple
eigenvalue of L. We denote 0 = �
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< �

2

 · · ·  �
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as its eigenvalues and put � := {�
1

,�
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, · · · ,�
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} to be an
orthonormal set of its eigenvectors with �

s

affording �

s

. The
notation N = {1, 2, . . . , n} is abused to also denote the index
set of �. Whether N denotes the set of buses or denotes an
index set for � will be clear from the context. The following
property of the spectrum of L turns out to be particularly
useful in this work.

Definition II.1. The matrix L is said to have simple spectrum
if all the eigenvalues of L are distinct.

We recommend the readers to take M = I

n

and B = I

m

in
first reading, under which our results are significantly cleaner
yet all key points (except Proposition IV.1) are captured.
Throughout the analysis, we make the following assumption:

Sensitive Load Frequency sensitive components only exist
at buses with controllable loads. That is, we assume F ⇢ U .

III. CONTROLLABILITY

In this section, we analyze the state-space dynamics given
in (1) and characterize its controllability using the spectra of
the scaled Laplacian matrix L.

Before presenting our characterization, we first clarify what
we mean by the controllability of (1). The classical definition
of controllability requires the whole state space Rn+m being
reachable from any initial point. This turns out to be too strong
and is not suitable for our application. Indeed, from the branch
flow dynamics
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If we assume the system is in the nominal state at time t = 0,
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) for any t. In other
words, the scaled branch flow vector is confined in the range
of C

T because of the system physics. This motivates the
following definition.

Definition III.1. The dynamics (1) is said to be P-controllable
or controllable in power system sense, if for any t > 0, initial
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there exists a control u such that

x(t) = �(x(0), u, t)

where �(x(0), u, t) is the system state at time t given initial
state x(0) and control input u.

Our first result generalizes the classical Kalman criteria to
the context of P-controllability. It shows that to determine the
system P-controllability, it suffices to form the controllability
matrix with the scaled Laplacian matrix L (instead of the full
system matrix A) and we can ignore the drifting term P

m

(even when it is time-variant) in (1a).
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The proof of this proposition is presented in Appendix A.
This result tells us that to decide the P-controllability of (1),
it amounts to compute the rank of W . Recall 0 = �

1

< �

2


· · ·  �

n

are the eigenvalues of L and {�
1

,�

2

, . . . ,�

n

} is
an orthonormal set of corresponding eigenvectors. Let Q be
the matrix with �

j

’s as columns and ⇤ be the diagonal matrix
with �

j

’s as diagonal entries, i.e. L = Q⇤Q
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Now we are ready to give the spectral characterization for
the P-controllability of (1).
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For any integer p, q, we denote as r(p, q) the unique number
r 2 {1, 2, · · · , q} such that p = qk + r for some integer k.
Define a permutation matrix ⇧ 2 Rn
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0 otherwise

eigenvectors of L 

Q = β1  ! βn[ ]

algebraic coverage of bus j 

cov( j) := s  βsj ≠ 0{ }
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∪
j∈U

cov( j) = all buses{ }

Theorem 
Swing dynamics is controllable if and only if 
n  L has a simple spectrum 
n  controllable DERs have full coverage 

holds a.s. 
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j∈S
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Theorem 
Swing dynamics is observable if and only if 
n  L has a simple spectrum 
n  frequency sensors have full coverage 

holds a.s. 
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Optimal placement of DER & frequency 
sensors 

n  set covering problem 
n  always install sensors at buses with 

controllable DERs, and vice versa 
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Fig. 2. Line diagram of the IEEE 39-bus New England interconnection test
system.

Corollary VI.1. For the dynamics (1), the set of optimal
placements of controllable loads and the set of optimal place-
ment of sensors are the same.

This result tells us that, in practice, we should always install
sensors to the buses with controllable loads, and vice versa.

B. Secondary frequency regulation with a single bus

We now demonstrate how our results can identify critical
buses for controllability by evaluating over the IEEE 39-bus
New England interconnection test system, as shown in Fig. 2.
There are 10 generators and 29 load nodes in the system, and
in contrast to our linearized model for theoretical study, the
simulation adopts more realistic nonlinear dynamics.

One can check that the L matrix associated with this
network has simple spectrum (which is as expected according
to Proposition IV.1) and that the bus 35 has full algebraic
coverage, i.e. all the eigenvectors �

s

of L have nonzero entry
at position 35. Therefore Theorem III.4 implies that even
if we can only inject control at bus 35, the system is still
P-controllable. Thus we should be able to drive the whole
system back to the nominal state after arbitrary disturbance.
In order to verify this, we add a step increase of 1 pu to
the generation at bus 30, and compare the system evolution
with or without control at bus 35. In contrast to the standard
control associated with the controllability Gramian, the control
we adopt here utilizes only local frequency deviation. Details
about the control scheme design can be found in [24]. The
simulation results are shown in Fig. 3.

As one can see from the figure, despite the geograph-
ical distance between the disturbance and the controllable
node, the control scheme successfully drives the grid back
to nominal state within 5 seconds. In contrast, when no
control is posed, the bus frequencies still stabilize because
of governor dynamics, but not to the nominal state. Moreover,
the stabilization process takes considerably longer time. Such
difference demonstrates that with a single bus 35 chosen based
on our theory, frequency regulation over the grid can actually
be achieved.

(a) With control. (b) Without control.

Fig. 3. Comparison of the system evolution with and without control at bus
35 after adding a step increase of 1 pu to the generation at bus 30.

VII. CONCLUSION

In this work, we develop full characterizations on the
impact of limited controllable loads/sensors coverage over
the controllability/observability for the swing and power flow
dynamics in frequency regulation. We present two applications
of our theoretical results: 1) an analytical application which
reduces the problem of optimal placement of controllable loads
and sensors to a set cover problem; 2) an evaluation over the
IEEE 39-bus New England interconnection test system where
secondary frequency control over the whole network can be
achieved by a single critical bus chosen based on our theory.

Our results can be extended in several directions. First,
the linearized model (1) is usually accurate near the nominal
operation point, but may incur noticeable error when the
system is far away from the equilibrium. Such scenarios
may arise after a system failure. It is thus interesting to see
how our results can be generalized to nonlinear dynamics.
Second, the control suggested by our result can be very
costly. It is of interest to understand what the cheapest control
should be if we already know the system is controllable, and
how the placement of controllable loads affects this optimal
cost. Third, in applications, we usually only focus on the
controllability over a subset of transmission lines that are
subject to congestion. We should understand whether we can
refine the theory so that the results can be tailored for such
partial controllability.
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