State of the automation & Closed loop contingency alleviation

Daniel Kirschen

State of the automation

Daniel Kirschen

What do operators do?

- Operational planning
- Operation under forecast conditions
- Operation under contingency conditions
- Operation under emergency conditions
- Restoration after a blackout

Operational planning

- Purpose:
 - Are enough resources available?
 - Under all credible operating conditions
 - Day-ahead, week(s) ahead
- At the root of all further automation
- Challenges:
 - Stochastic renewable generation
 - Electricity markets

Operational planning

- Can this be automated?
 - Involves a lot of data gathering
 - Forecasts: load, markets, renewable generation
 - Maintenance plans: generation, transmission
 - Simulation tools are increasingly sophisticated
 - Fairly routine work
 - Well-established criteria and procedures
 - Except in unusual circumstances
 - Severe weather, eclipses, unanticipated outages

Operation under forecast conditions

- Normal operation is quite boring...
- Substantially automated:
 - Automatic Generation Control (AGC)
 - Real-time balancing markets (5 minutes)
 - EMS real-time sequence
- Issues:
 - Safety clearances for maintenance operations
 - Nuisance alarms
 - Interactions with neighboring systems

Operation under contingency conditions

- Contingency condition = anticipated credible deviation from forecast conditions
 - N-1 conditions:
 - Generation outage
 - Transmission outage
 - Large deviation from net load forecast
- Preventive vs. corrective security

Preventive security

- System remains stable after the contingency
- System is typically no longer N-1 secure
- Must be returned to a N-1 secure state
- Must determine that state by solving a Security Constrained Optimal Power Flow (SCOPF)
- Must drive the system towards that state
- May have implications for later operations
- Could probably be automated

Corrective security

- Post-contingency corrective actions are required to maintain stability
- System operators prefer preventive security because an immediate response is not needed
- Manual vs. automatic corrective actions

Automated corrective actions

- Also known as Remedial Action Schemes (RAS)
- Fast action often involving load shedding
- Usually event-driven rather than state-driven
 Difficult to define states where scheme should/should not trigger
 - Leads to a multiplication of these schemes
 - Interactions between schemes not well-understood
- Schemes are often armed only under certain conditions to avoid spurious operation

Manual corrective actions

- Generation redispatch, line switching, reactive device switching, fast starting generation
- Take advantage of slower system time constants
- Some work has been done on automating these actions
 - e.g. Almassalkhi & Hiskens

Operation under emergency conditions

- Emergency conditions = beyond what is considered credible
- Leads to blackouts
- Space is vast
- Operators:
 - Lack situation awareness
 - Hesitate to take drastic actions

Automation under emergency conditions

 EDF developed a network splitting scheme to deal with emergencies

- Goal: save parts of the system from collapsing

- Operated the scheme in open loop
- Generated several false alarms
- Scheme was discontinued

Why do we get blackouts?

- Typical large scale blackout:
 - Trigger in the heavy electrical infrastructure
 - Compounded by problems in the information infrastructure
- Don't have models that link the two
- Don't know when the information is wrong
- Automation can and does make matters worse
- Out-of-the-loop syndrome

Restoration after a blackout

- Unknown territory
- No two blackouts are the same
- Lots of unexpected problems crop up
- Requires communication with many actors
 Field crews, power plants, ..
- Requires specialist knowledge in a variety of areas

Closed loop contingency alleviation

Daniel Kirschen Baosen Zhang Nicolò Mazzi (University of Padova, Italy)

ELECTRICAL ENGINEERING UNIVERSITY of WASHINGTON

Context

- Power system under a contingency condition
- Operating constraints are violated:
 - Line flow limit
 - Voltage limit
- Corrective actions are required:
 - Generation redispatch
 - Voltage set-point adjustment
- Can we automate the process?

Concept

- Standard approach:
 - Determine a new operating point using an OPF
 - Drive the system towards that operating point
- Problems:
 - Full OPF solution takes time
 - Models are inaccurate
 - Trajectory may be problematic
- Work by Steve Low and his students on online algorithm for OPF
- Can we just do that using closed loop control?

Automatic Generation Control (AGC)

Contingency alleviation concept

Basic algorithm

- Detect operating constraint violation(s) from network measurements
- Determine optimal control actions that can be implemented considering ramp rate limits and update rate of AGC
- Wait for next measurement
- → Start moving the system immediately towards a better, more stable operating point

Schematic representation

Basic objective function:

$$\mathcal{L} = \mu \sum_{l \in N^l} \max(|V_l - 1| - \overline{v}, 0) + \frac{1}{k} \sum_{(ij) \in E} \max(|S_{ij}| - \overline{S}_{ij}, 0)$$

- Not smooth
- Not sensitive to variables close to their limit

Penalized objective function:

$$\mathcal{L}' = \mu \sum_{l \in N^l} g^V(V_l) + \frac{1}{k} \sum_{(ij) \in E} g^S_{ij}(S_{ij})$$

Penalty function for constraint violations

Basic vs. penalized objective function:

Optimization problem at each

iteration

Min
$$\mu \sum_{l \in N^l} g^V (V_l^m + \Delta V_l) + \frac{1}{k} \sum_{(ij) \in E} g^S_{ij} (S^m_{ij} + \Delta S_{ij})$$

over $u := (\Delta p_g, \Delta V_g, \forall g \in N^g)$

$$x := \left(\Delta V_l, \forall l \in N^l; \Delta S_{ij}, \forall (ij) \in E\right)$$

s.t. x = F(u) Non-linearity $\sum_{g \in N^g} \Delta p_g = 0$ $\underline{p}_g \leq p_g^m + \Delta p_g \leq \overline{p}_g, \quad \forall g \in N^g$ $|V_g^m + \Delta V_g - 1| \leq \overline{v}, \quad \forall g \in N^g$ $-R_g t^m \leq \Delta p_g \leq R_g t^m, \quad \forall g \in N^g$ $-T_g t^m \leq \Delta V_g \leq T_g t^m, \quad \forall g \in N^g$ Ramp rate limits

Simplifications

- Small steps \rightarrow suitable for linearization
- Take advantage of active/reactive decoupling
- Sensitivities based on fast decoupled power flow

→ Fast LP formulation of the optimization problem

Simulations

- IEEE 118-bus system
- Three types of operating constraint violations:
 - Line overloads
 - Over and under-voltages
 - Combined overloads and voltage violations

Basic vs. penalized objective function

Bus active power injections

Voltages and set-points for violation at bus 63

Objective functions for voltage violation at bus 63

Bus voltages for violation at bus 63

Combined overload and voltage violation

402 simulations: 5 voltage violations x 67 line overloads

Conclusions

- Proposed a closed-loop approach to the relief of violations of operating conditions
 - Relies on the network as a natural solver
 - Operates in parallel with the frequency control loop
 - Small steps allow linearization
 - Efficient LP solution even for large systems
- Demonstrated on 118-bus system for overloads and voltage violations