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Inter-area oscillations in power systems
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Conventional control of generators
 
fully decentralized controller
 

network of generators
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Conventional control of generators
 
fully decentralized controller
 

network of generators 

• CO N V E N T I O N A L C O N T RO L 

* local oscillations V 

* inter-area oscillations K 
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Possible alternative
 
structured dynamic controller
 

distributed plant and its interaction links
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Possible alternative
 
structured dynamic controller
 

distributed plant and its interaction links
 

C H A L L E N G E
 

design of controller architectures
 

performance vs complexity
 



4 

Complexity via Regularization 

minimize J(K) + γ g(K)
 

←
−




←
−


 

closed-loop controller
 

performance complexity
 

γ > 0 – performance vs complexity tradeoff 

Fardad, Lin, Jovanovi ́c, ACC ’11 

Lin, Fardad, Jovanovi ́c, IEEE TAC ’13 

Matni & Chandrasekaran, IEEE TAC ’16 



State-feedback H2 problem
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• TR A D E -O FF C U RV E 

* performance vs complexity 
pe

rf
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controller complexity
 



6 

This talk
 
structured memoryless controller
 

distributed plant and its interaction links
 

O B J E C T I V E
 

identification of a signal exchange network
 

performance vs sparsity
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CO N T RO L P RO B L E M
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Lyapunov equation 

discrete-time dynamics: xt+1 = A xt + B dt 

white-in-time forcing: E 
(
dt d

T 
τ 

) 
= W δt − τ 

• LYA P U N OV E QUAT I O N 

TXt + 1 := E 
(
xt + 1 xt + 1

) 

T= E 
(
(A xt + B dt) 

(
x AT + dT BT 

))
t t 

T= A E 
(
xt x
)
AT + B E 

(
dt d

T 
)
BT 

t t 

= A Xt A
T + B W BT 

* continuous-time version 

d Xt 
= A Xt + Xt A

T + B W BT 

d t 
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Minimum variance state-feedback problem
 

dynamics: ẋ = A x + B1 d + B2 u 

objective function: J = lim E 
(
x T (t) Q x(t) + u T (t) R u(t)

)
t → ∞ 

memoryless controller: u = −F x 
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Minimum variance state-feedback problem
 

dynamics: ẋ = A x + B1 d + B2 u 

objective function: J = lim E 
(
x T (t) Q x(t) + u T (t) R u(t)

)
t → ∞ 

memoryless controller: u = −F x 

• CL O S E D -L O O P VA R I A N C E 

J − non-convex function of F 
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No structural constraints 
• SDP C H A R AC T E R I Z AT I O N 

minimize trace 
(
(Q + F T R F ) X

)
X, F 

sub ject to (A − B2F ) X + X (A − B2F )T + B1B
T = 01 

X � 0 
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No structural constraints 
• SDP C H A R AC T E R I Z AT I O N 

minimize trace 
(
(Q + F T R F ) X

)
X, F 

sub ject to (A − B2F ) X + X (A − B2F )T + B1B
T = 01 

X � 0 

* change of variables: F X = Y 

minimize trace (Q X) + trace 
(
R Y X −1 Y T 

)
X, Y 

T
sub ject to (A X − B2 Y ) + (A X − B2 Y ) + B1B

T = 01 

X � 0 

Schur complement ⇒ SDP characterization
 



Riccati to the rescue
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• RI C C AT I -B A S E D -C H A R AC T E R I Z AT I O N
 

globally optimal controller 

AT P + P A − P B2 R
−1BT 

2 P + Q = 0 

Fc = R−1BT 
2 P 
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• ST RU C T U R A L C O N S T R A I N T S F ∈ S
 

centralized fully-decentralized localized ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

∗ ∗ ∗ ∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ∗ ∗ ∗ ∗ ⎥ ⎢ ∗ ⎥ ⎢ ∗ ∗ ∗ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∗ ∗ ∗ ∗ ∗ ∗ ∗
 

G R A N D C H A L L E N G E
 

convex characterization in the face of structural constraints
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difficult to establish relation between

 

structural constraints 
  

structural constraints 
 


and

on F on X and Y
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Classes of convex problems 
• PART I A LLY-NES T E D SY S T E MS 

Ho & Chu, IEEE TAC ’72
 
Voulgaris, ACC ’00; ACC ’01
 

• CO N E - AND F U N NE L -C AUS AL SY ST EMS 

Voulgaris, Bianchini, Bamieh, SCL ’03
 
Bamieh & Voulgaris, SCL ’05
 
Fardad & Jovanovi ́ 
c, Automatica ’11 

• QUA D R ATI C ALLY-INVARI ANT SY S TE MS 

Rotkowitz & Lall, IEEE TAC ’06 

• POS E T-C AUS A L SY ST EMS 

Shah & Parrilo, IEEE TAC ’13 

• POS ITI VE S YS TE M S 

Tanaka & Langbort, IEEE TAC ’11 
Colaneri, Middleton, Chen, Caporale, Blanchini, Automatica ’14 
Rantzer, EJC ’15 ; IEEE TAC ’16 
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An example
 

� 
p(t) 
� 

u(t) = −
 
Fp Fv

 
v(t) 

• OB J E C T I V E 

* minimize steady-state variance of p, v, u 

optimal controller – Linear Quadratic Regulator 
⎡ 
u1(t) 
⎤ ⎡ 

∗ ∗ ∗ ∗ 
⎤ ⎡ 

p1(t) 
⎤ ⎡ 

∗ ∗ ∗ ∗ 
⎤ ⎡ 

v1(t) 
⎤ 

u2(t) ∗ ∗ ∗ ∗ p2(t) ∗ ∗ ∗ ∗ v2(t) 
= − − 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦
u3(t) ∗ ∗ ∗ ∗ p3(t) ∗ ∗ ∗ ∗ v3(t) 

u4(t) ∗ ∗ ∗ ∗ p4(t) ∗ ∗ ∗ ∗ v4(t) \ vF J \ vF J

Fp Fv 
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Structure of optimal controller 
position feedback matrix gains for middle mass
 

• OB S E RVAT I O N S 

* diagonals almost constant (modulo edges) 

* off-diagonal decay of a centralized gain 

Bamieh, Paganini, Dahleh, IEEE TAC ’02 

Motee & Jadbabaie, IEEE TAC ’08 
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Enforcing sparsity? 
• One approach: truncate centralized controller
 

• DA N G E R S 

* significant performance degradation 

* instability 
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Rest of the talk 
•	 SPA R S I T Y-P RO M OT I N G O P T I M A L C O N T RO L 

*	 identification and design of sparse feedback gains 

•	 AL G O R I T H M 

*	 Proximal Augmented Lagrangian Method 

•	 CL A S S E S O F C O N V E X P RO B L E M S 

* optimal actuator/sensor selection 

* optimal design of consensus networks 

*	 diagonal modifications of positive systems 

•	 EX A M P L E S 

•	 SU M M A RY A N D O U T L O O K 
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SPA R S I T Y -P RO M OT I N G O P T I M A L C O N T RO L
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• OB J E C T I V E 

* promote sparsity of F 

⎡ 
u1(t) 
⎤ ⎡ 

∗ ∗ 
⎤ ⎡ 

x1(t) 
⎤ 

⎢
u2(t) 
⎥ ⎢ ∗ ∗ ∗ ⎥⎢ x2(t) ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢

u3(t) 
⎥

= − 
⎢

∗ ∗ ∗ 
⎥⎢

x3(t) 
⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢

u4(t) 
⎥ ⎢ ∗ ∗ ⎥⎢ x4(t) ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ 

u5(t) ∗ ∗ ∗ x5(t) \ vF
F 

J 
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Sparsity-promoting optimal control 

minimize J(F ) + γ card (F ) 

←
−




←
−


 

variance sparsity-promoting 

amplification penalty function 

card (F ) − number of non-zero elements of F
 

γ > 0 − performance vs sparsity tradeoff
 

Fardad, Lin, Jovanovi ́c, ACC ’11 

Lin, Fardad, Jovanovi ́c, IEEE TAC ’13 



22 

Convex relaxations of card (F ) 

£1 norm:
 
|Fij|

i, j 

weighted £1 norm:
 

wij |Fij|, wij ≥ 0 
i, j 

• CA R D I N A L I T Y V S W E I G H T E D £1 N O R M 

{wij = 1/|Fij|, Fij � 0} ⇒ card (F ) 
 

wij |Fij|= =
i, j 



 

 

�
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Convex relaxations of card (F )
 

£1 norm: |Fij|
i, j 

weighted £1 norm: wij |Fij|, wij ≥ 0 
i, j 

• CA R D I N A L I T Y V S W E I G H T E D £1 N O R M 

{wij = 1/|Fij|, Fij = 0} ⇒ card (F ) = wij |Fij|
i, j 

RE-W E I G H T E D S C H E M E 

* use gains from previous iteration to form weights 

+ 1 
w = ij |Fij| + ε 

Candès, Wakin, Boyd, J. Fourier Anal. Appl. ’08 
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A non-convex relaxation of card (F )
 

� |Fij|
�

sum-of-logs: log 1 + , 0 < ε < 1
 
ε 

i,j 

Candès, Wakin, Boyd, J. Fourier Anal. Appl. ’08 
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CL A S S E S O F C O N V E X P RO B L E M S
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Optimal actuator/sensor selection 
• OB J E C T I V E : identify row-sparse feedback gain 

Tminimize J(F ) + γ �ei F �2 

i 

←
−




←
−


 

variance row-sparsity-promoting 

amplification penalty function 
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• CH A N G E O F VA R I A B L E S : Y := F X 

* convex dependence of J on X and Y 

* row-sparse structure preserved 
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• OP T I M A L AC T UATO R S E L E C T I O N
 

* admits SDP characterization 

Tminimize J(X, Y ) + γ �ei Y �2 

i 

←
−




←
−


 

variance row-sparsity-promoting 

amplification penalty function 

Polyak, Khlebnikov, Shcherbakov, ECC ’13 

M ̈unz, Pfister, Wolfrum, IEEE TAC ’14 

Dhingra, Jovanovi ́c, Luo, CDC ’14 
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Design of undirected consensus networks
 
dynamics: ẋ = − L x + d + u 

control: u = − F x 

objective: J = lim E 
(
x T (t) Q x(t) + u T (t) R u(t)

)
t → ∞ 
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Design of undirected consensus networks 
dynamics: ẋ = − L x + d + u
 

control: u = − F x
 

objective: J = lim E 
(
x T (t) Q x(t) + u T (t) R u(t)

)

t → ∞ 

convex characterization 

minimize trace (X) + γ 1T Y 1 
⎡ � 

Q1/2 
� ⎤ 

X 
sub ject to ⎢ −R1/2 F ⎥

0⎦ >⎣ 
Q1/2 −F R1/2 F + L + 11T /n 

F 1 = 0, − Yij ≤ Wij Fij ≤ Yij 

Lin, Fardad, Jovanovi ́c, Allerton ’12 

Zelazo, Schuler, Allg ̈ower, SCL ’13 

Hassan-Moghaddam & Jovanovi ć, arXiv:1506.03437 



 

�

� �
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Diagonal modifications of positive systems
 

ẋ = A + uk Dk x + d 
k 

A − Metzler matrix (Aij ≥ 0, i = j) 

Dk − diagonal matrices 



�  �

�
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Diagonal modifications of positive systems
 

ẋ = A + uk Dk x + d 
k 

A − Metzler matrix (Aij ≥ 0, i = j) 

Dk − diagonal matrices 

• EX A M P L E S 

xi mutates to xj at rate Aj i 
* combination drug therapy 

uk kills xi at rate (Dk)ii 

* leader selection in directed networks 

Rantzer & Bernhardsson, CDC ’14 

Jonsson, Matni, Murray, CDC ’14 

Dhingra, Colombino, Jovanovi ́c, ECC ’16 
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Parameterized family of feedback gains 

F (γ) := argmin (J(F ) + γ g(F )) 
F 
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CA S E S T U DY: W I D E -A R E A C O N T RO L 

D¨ c, Chertkov, Bullo, IEEE TPWRS ’14 orfler, Jovanovi ́

Wu, D ̈ c, IEEE TPWRS ’16 orfler, Jovanovi ́

http://people.ece.umn.edu/users/mihailo/software/lqrsp/wac.html 

http://people.ece.umn.edu/users/mihailo/software/lqrsp/wac.html
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Electro-mechanical oscillations in power systems 
• Local oscillations 
* single generators swing relative to the rest of the grid 

* typically damped by Power System Stabilizers (PSSs) 

• Inter-area oscillations 
* groups of generators oscillate relative to each other 

* associated with dynamics of power transfers 
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Inter-area oscillations
 
• Blackout of Aug. 10, 1996 
* resulted from instability of the 0.25 Hz mode 

western interconnected system: California-Oregon power transfer:
 From Linear to Nonlinear  Oscillation Damping Control

Post Disturbance Analysis of August 10, 1996 Blackout 

What a PMU could measure

4400

4600  Observed COI Power (Dittmer Control Center)

4000

4200

4000

4600  Simulated COI Power (initial WSCC base case)

4200

4400

0 10 20 30 40 50 60 70 80 90

4000

0 10 20 30 40 50 60 70 80 90

Time in Seconds
What was predicted from offline planning models

A. Chakrabortty & P. Khargonekar, ACC 2013
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Slow coherency theory
 
• WH E R E A R E T H E I N T E R -A R E A M O D E S C O M I N G F RO M ? 

* slow coherency theory Chow, Kokotovi ́c, et al. ’78, ’82 

RTS 96 power system: linearized swing equation: 

220

309

310

120
103

209

102102

118

307

302

216

202

ge
ne

ra
to

r 
an

gl
es

 

time
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wide-area
controller

power
network

dynamics

generator

transmission 
line 

wide-area 
measurements

(e.g. PMUs)

remote control signals

uwac(t)

uloc(t)

uloc(t)

+

+

+

channel and
measurement 
noise

local control loops

...

system noise

FACTS

PSS & 
AVR

⌘(t)
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Case study: IEEE New England Power Grid 

• MO D E L F E AT U R E S 

* detailed sub-transient generator models 

* exciters 

* carefully tuned PSS data 
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},





(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0),ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ,ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability

!"#$%&'''%()(*%(+,-.,*%/012-3*%)0-4%5677*%899: !"#$%&'

(')$

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 10, 2009 at 14:48 from IEEE Xplore.  Restrictions apply.

1
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Preview of a key result 

• FE E D B AC K G A I N S T RU C T U R E 

nearly centralized 
fully decentralized controller ⇒ 

performance 

* 10% degradation relative to the optimal centralized controller 

* optimal retuning of the decentralized PSS gains 
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An example: swing equation
 

¨ M θ + D θ̇ + L θ = d + u
 

L – Laplacian matrix
 

⇓
 

only relative angle differences enter into dynamics
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Performance index 

• EN E R G Y O F P OW E R N E T WO R K 

* inspired by slow coherency theory 

J := lim E
 
θT (t) Qθ θ(t) + θ̇T (t) M θ̇(t) + u T (t) u(t)

 
t → ∞ 

Qθ := I − (1/N ) 11T 

* Qθ – penalizes deviation from average 

θ̄ := (1/N ) 1T θ 

←
−


 

not detectable from Qθ
 



� � � �

� � � �
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Structural constraints 

• ZE RO E -VA L U E A S S O C I AT E D W I T H T H E AV E R AG E M O D E
 

1 0
open-loop: A = 

0 0
 

1 0

closed-loop: (A − B2 K) = 

0 0 



� � � �� � � �

� �
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Coordinate transformation 

• EL I M I N AT E T H E AV E R AG E -M O D E 

θ 

θ̇ 
= 

U 

0 

0 

I 

ψ 

θ̇ 
+ 

1 

0 
θ̄ 

\ vF
T 
J 

1 
⊥ 

B Y P RO J E C T I N G S TAT E S O N TO
 
0
 

columns of U – form an orthonormal basis of 1⊥ 
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Sparsity-promoting optimal control 

minimize J(F ) + γ � F T T �1 

←
−




←
−


 

new coordinates original coordinates 

(nonconvex, smooth) (convex, nonsmooth) 

* F = K T − to eliminate the average-mode 

* � F T T �1 − not separable in the elements of F 
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• OP T I M A L C O N T RO L P RO B L E M 

minimize 
F, K 

J(F ) + γ � K �1 

sub ject to F T T − K = 0 
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Performance vs sparsity
 

performance loss: sparsity of K:
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Information exchange network 
SPA R S I T Y PAT T E R N O F K 

• local 

• long-range interactions 

γ = 0.1099, card (K) = 39 
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Information exchange network 
SPA R S I T Y PAT T E R N O F K 

• local 

• long-range interactions 

γ = 0.1099, card (K) = 39 

γ = 2, card (K) = 18
 



r 
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Response to stochastic forcing 

• WH I T E -I N -T I M E F O R C I N G 

E (d(t1) d ∗ (t2)) = I δ(t1 − t2) 

* Hilbert-Schmidt norm 
power spectral density: 

�H(ω)�2 = trace (H(ω) H∗(ω)) = σi 
2 (ω)HS 

i 

* H2 norm 

variance amplification: 

1 
� ∞ 

�H�2 = �H(ω)�2 
2 HS dω 

2 π −∞ 
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Open-loop dynamics: power spectral density
 

* resonant peak 1: inter-area modes 2, 3, 4, 5
 

* resonant peak 2: inter-area mode 1
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Open-loop vs closed-loop systems
 

* low frequencies: 10% performance degradation
 



Performance vs sparsity
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• Performance comparison: block-sparse vs centralized 

(J − Jc) /Jc card (F ) /card (Fc) 

801.6 

10−4 10−3 10−2 10−1 100
 10−4 10−3 10−2 10−1 100
 

pe
rc

en
t
 601.2 

400.8 

200.4 

0 0 

γ γ 

1.6 % performance loss relative to Fcγ = 1 −−−−−−−−−−→ 
5.5 % non-zero elements in F 



Power networks
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• RE-D E S I G N O F F U L LY-D E C E N T R A L I Z E D C O N T RO L L E R S 

* preserves rotational symmetry 

po
w

er
 s

pe
ct

ra
l d

en
si

ty
 

temporal frequency 

Wu, D ̈ c, IEEE TPWRS ’16 orfler, Jovanovi ́
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AD D I T I O N A L E X A M P L E S
 

www.umn.edu/∼mihailo/software/lqrsp/
 

http://www.ece.umn.edu/users/mihailo/software/lqrsp/
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Mass-spring system 
Performance comparison: sparse vs centralized
 

(J − Jc) /Jc 

γ
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Mass-spring system 
Performance comparison: sparse vs centralized
 

(J − Jc) /Jc 

γ
 

card (F ) /card (Fc) (J − Jc) /Jc 

10% 
6% 
2% 

0.75% 
2.4% 
7.8% 

fully-decentralized
 



� � � � � �  � � � �
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Network with 100 nodes
 

ṗi 1 1 pi −α(i,j) pj 0 
= + e + (di + ui) 

v̇i 1 2 vi vj 1 
j �= i\ vF J

unstable 
\ vF J

coupling
dynamics 

α(i, j ): Euclidean distance between nodes i and j 

Motee & Jadbabaie, IEEE TAC ’08 
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• Performance comparison: sparse vs centralized
 

(J − Jc) /Jc (J − Jc) /Jc
 

γ card (F ) /card (Fc)
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communication graph of a truncated centralized gain
 

card (F ) = 7380 (36.9%)
 

non-stabilizing
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identified communication graph
 

γ = 5 

card (F ) /card (Fc) = 8.8% 

(J − Jc) /Jc = 24.6% 
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Sparsity-promoting consensus algorithm 

plant graph identified communication graph
 

J − Jall-to-all
Q := deviation from average ≈ 82%
 

Jall-to-all 

Hassan-Moghaddam & Jovanovi ć, arXiv:1506.03437
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AL G O R I T H M
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Method of multipliers 

minimize J(F ) + γ g(F ) 

• Step 1: introduce an additional variable/constraint
 

minimize J(F ) + γ g(G) 

sub ject to F − G = 0 

benefit: decouples J and g
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Method of multipliers 

minimize J(F ) + γ g(F ) 

• Step 1: introduce an additional variable/constraint
 

minimize J(F ) + γ g(G) 

sub ject to F − G = 0 

benefit: decouples J and g 

• Step 2: introduce augmented Lagrangian 

Lρ(F, G; Λ) = J(F ) + γ g(G) + (Λ, F − G) + 
ρ �F − G�2 

F2
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• Step 3: use MM for augmented Lagrangian minimization
 

ρ Lρ(F, G; Λ) = J(F ) + γ g(G) + (Λ, F − G) + �F − G�2 
F2 

M E T H O D O F M U LT I P L I E R S
 
(
F k+1, Gk+1

) 
:= argmin Lρk(F , G; Λk) 

F, G 

Λk+1 Λk ρk (F k+1 − Gk+1):= + 
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• Step 4: Polishing – back to structured optimal design 

identifies sparsity patterns 
* MM 

provides good initial condition for structured design 
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• Step 4: Polishing – back to structured optimal design 

identifies sparsity patterns 
* MM 

provides good initial condition for structured design 

* optimality conditions for the structured problem 

(A − B2 F )T P + P (A − B2 F ) = − 
(
Q + F T R F 

)

(A − B2 F ) X + X (A − B2 F )T = −B1 B
T 
1 (

R F − B2 
T P 
) 
X ◦ IS = 0 

IS - structural identity ⎡ ⎤ ⎡ ⎤
∗ ∗ 1 1 
∗ ∗ ∗ 1 1 1
⎢ ⎥ ⎢ ⎥

F = ⇒ =
⎢ ⎥

IS 
⎢ ⎥⎢ ∗ ∗ ∗ ⎥ ⎢

1 1 1 
⎥⎣ ⎦ ⎣ ⎦

∗ ∗ 1 1 

Lin, Fardad, Jovanovi ́c, IEEE TAC ’11 
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Proximal operator and Moreau envelope
 
• PROX I M A L O P E R ATO R 

1 
proxµg(V ) := argmin g(G) + �G − V �

G 2µ 

MO R E AU E N V E L O P E 

2 
F
 

1
 
Mµg(V ) := inf g(G) + �G − V �
2
 

F

G
 2µ
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Proximal operator and Moreau envelope
 
• PROX I M A L O P E R ATO R 

1 
proxµg(V ) := argmin g(G) + �G − V �

G 2µ 

MO R E AU E N V E L O P E 

2 
F
 

1
 
Mµg(V ) := inf g(G) + �G − V �
2
 

F

G
 2µ
 

* continuously differentiable 
even when g is not 

1 �Mµg(V ) = 
(
V − proxµg(V )

)
µ 

Parikh & Boyd, FnT in Optimization ’14
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Proximal augmented Lagrangian
 

Lρ(F, G; Λ) = J(F ) + γ g(G) + 
ρ �G − (F + (1/ρ)Λ)�2 − 

1 �Λ�2 
F F2 2ρ\ vF J 

* minimize over G 

G* = prox(γ /ρ)g(F + (1/ρ)Λ) 

* evaluate Lρ at G* 

Lρ(F ; Λ) := Lρ(F, G*(F, Λ); Λ) 

= J(F ) + γ M(γ /ρ)g(F + (1/ρ)Λ) − 
1 
2ρ 
�Λ�2 

F 

continuously differentiable
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Method of multipliers
 

F k+1 = argmin Lρk(F ; Λk) 
F 

Λk+1 (F k+1= + (1/ρk)Λk)γ �M(γ /ρk)g 

• FE AT U R E S 

* outstanding practical performance 

* nonconvex J : convergence to a local minimum 

* F -minimization: differentiable problem 

* adaptive ρ-update 

Dhingra & Jovanovi ́c, ACC ’16 

Dhingra & Jovanovi ć, arXiv:1610.04514 



Sparsity-promoting problem: G-update
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• G-U P DAT E I N S PA R S I T Y-P RO M OT I N G P RO B L E M
 

ρ 2
minimize γ wij |Gij| + (Gij − Vij)

Gij 2 
i, j 

separability ⇒ element-wise analytical solution
 

prox operator 
soft-thresholding 

Moreau envelope 
Huber function 

�M 
saturation 

a = (γ /ρ) wij 
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Related effort 
•	 SPARS I TY-PROMOTING H∞ C O N TROL 

Schuler, Li, Lam, Allg ̈ower, IJC ’11
 

Schuler, M ̈ ower, IFAC ’12
 unz, Allg ̈

•	 SY ST EM S WIT H SYM M ETRI ES 

Dhingra & Jovanovi ́c, ACC ’15
 

Wu & Jovanovi ́ 
c, SCL ’17 

•	 CO N V EX R E LAX ATI O N S 

Lavaei, Allerton ’13 

Fazelnia, Madani, Lavaei, CDC ’14 

Fardad & Jovanovi ́c, ACC ’14 

•	 ATO M I C N ORM RE GULA R I ZAT ION 

Matni, CDC ’13; IEEE TCNS ’17 ; Matni & Chandrasekaran, IEEE TAC ’16 

•	 SY ST EM-LE VE L SYNT H ES I S 

Wang, Matni, Doyle, IEEE TAC ’17 (submitted) 
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Summary
 
• SPA R S I T Y-P RO M OT I N G O P T I M A L C O N T RO L 

* Performance vs sparsity tradeoff 

Lin, Fardad, Jovanovi ́c, IEEE TAC ’13 

Jovanovi ́c & Dhingra, EJC ’16 

* Software 
www.umn.edu/∼mihailo/software/lqrsp/ 

• ON G O I N G E FF O RT 

* Leader selection in large dynamic networks 

Lin, Fardad, Jovanovi ́c, IEEE TAC ’14 

* Optimal synchronization of sparse oscillator networks 

Fardad, Lin, Jovanovi ́c, IEEE TAC ’14 

* Optimal design of distributed integral action 

Wu, D ̈ c, ACC ’16 orfler, Jovanovi ́

http://www.ece.umn.edu/users/mihailo/software/lqrsp/
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