Controller Architectures: Tradeoffs between Performance and Complexity

Mihailo Jovanović

ee.usc.edu/mihailo/

NREL Autonomous Energy Grids Workshop

Inter-area oscillations in power systems

1

Image credit: Florian Dörfler

Conventional control of generators fully decentralized controller

network of generators

Conventional control of generators fully decentralized controller

network of generators

- CONVENTIONAL CONTROL
 - \star local oscillations \checkmark
 - ★ inter-area oscillations X

Possible alternative

structured dynamic controller

distributed plant and its interaction links

Possible alternative

structured dynamic controller

distributed plant and its interaction links

CHALLENGE

design of controller architectures

performance vs complexity

Complexity via Regularization

 $\gamma > 0$ – performance vs complexity tradeoff

Fardad, Lin, Jovanović, ACC '11

Lin, Fardad, Jovanović, IEEE TAC '13

Matni & Chandrasekaran, IEEE TAC '16

• TRADE-OFF CURVE

***** performance vs complexity

controller complexity

This talk

structured memoryless controller

distributed plant and its interaction links

OBJECTIVE

identification of a signal exchange network

performance vs sparsity

CONTROL PROBLEM

Lyapunov equation

discrete-time dynamics: $x_{t+1} = A x_t + B d_t$ white-in-time forcing: $\mathbf{E} \left(d_t d_{\tau}^T \right) = W \delta_{t-\tau}$

• LYAPUNOV EQUATION

$$\begin{aligned} X_{t+1} &\coloneqq \mathbf{E} \left(x_{t+1} x_{t+1}^T \right) \\ &= \mathbf{E} \left((A x_t + B d_t) \left(x_t^T A^T + d_t^T B^T \right) \right) \\ &= A \mathbf{E} \left(x_t x_t^T \right) A^T + B \mathbf{E} \left(d_t d_t^T \right) B^T \\ &= A \mathbf{X}_t A^T + B W B^T \end{aligned}$$

★ continuous-time version

$$\frac{\mathrm{d} X_t}{\mathrm{d} t} = A X_t + X_t A^T + B W B^T$$

Minimum variance state-feedback problem

dynamics: $\dot{x} = Ax + B_1d + B_2u$

objective function: $J = \lim_{t \to \infty} \mathbf{E} \left(x^T(t) Q x(t) + u^T(t) R u(t) \right)$

memoryless controller: u = -F x

Minimum variance state-feedback problem

dynamics: $\dot{x} = Ax + B_1d + B_2u$

objective function: $J = \lim_{t \to \infty} \mathbf{E} \left(x^T(t) Q x(t) + u^T(t) R u(t) \right)$

memoryless controller: u = -Fx

• CLOSED-LOOP VARIANCE

J -**non-convex** function of F

No structural constraints

• SDP CHARACTERIZATION

$$\begin{array}{ll} \underset{X,F}{\text{minimize}} & \text{trace} \left(\left(Q + F^T R F \right) X \right) \\ \text{subject to} & \left(A - B_2 F \right) X + X \left(A - B_2 F \right)^T + B_1 B_1^T = 0 \\ & X \succ 0 \end{array}$$

No structural constraints

• SDP CHARACTERIZATION

minimize trace
$$((Q + F^T R F) X)$$

subject to $(A - B_2 F) X + X (A - B_2 F)^T + B_1 B_1^T = 0$
 $X \succ 0$

\star change of variables: FX = Y

minimize trace (QX) + trace $(RYX^{-1}Y^T)$ subject to $(AX - B_2Y) + (AX - B_2Y)^T + B_1B_1^T = 0$ $X \succ 0$

Schur complement \Rightarrow SDP characterization

• **RICCATI-BASED-CHARACTERIZATION**

globally optimal controller

• Structural constraints $F \in \mathcal{S}$

GRAND CHALLENGE

convex characterization in the face of structural constraints

$\left\{\begin{array}{c} \text{structural constraints}\\ \text{on }F\end{array}\right\} \text{ and } \left\{\begin{array}{c} \text{structural constraints}\\ \text{on }X \text{ and }Y\end{array}\right\}$

Classes of convex problems

• PARTIALLY-NESTED SYSTEMS Ho & Chu, IEEE TAC '72 Voulgaris, ACC '00; ACC '01

• CONE- AND FUNNEL-CAUSAL SYSTEMS Voulgaris, Bianchini, Bamieh, SCL '03 Bamieh & Voulgaris, SCL '05 Fardad & Jovanović, Automatica '11

- QUADRATICALLY-INVARIANT SYSTEMS Rotkowitz & Lall, IEEE TAC '06
- POSET-CAUSAL SYSTEMS Shah & Parrilo, IEEE TAC '13

POSITIVE SYSTEMS

Tanaka & Langbort, IEEE TAC '11 Colaneri, Middleton, Chen, Caporale, Blanchini, Automatica '14 Rantzer, EJC '15; IEEE TAC '16

An example

$$u(t) = -\begin{bmatrix} F_p & F_v \end{bmatrix} \begin{bmatrix} p(t) \\ v(t) \end{bmatrix}$$

- OBJECTIVE
 - \star minimize steady-state variance of $p,\,v,\,u$

optimal controller – Linear Quadratic Regulator

Structure of optimal controller

position feedback matrix

• OBSERVATIONS

- * diagonals almost constant (modulo edges)
- \star off-diagonal decay of a centralized gain

Bamieh, Paganini, Dahleh, IEEE TAC '02

Motee & Jadbabaie, IEEE TAC '08

Enforcing sparsity?

One approach: truncate centralized controller

DANGERS

⋆ significant performance degradation

⋆ instability

Rest of the talk

- SPARSITY-PROMOTING OPTIMAL CONTROL
 - \star identification and design of sparse feedback gains
- Algorithm
 - * Proximal Augmented Lagrangian Method
- CLASSES OF CONVEX PROBLEMS
 - ⋆ optimal actuator/sensor selection
 - ⋆ optimal design of consensus networks
 - * diagonal modifications of positive systems
- EXAMPLES
- SUMMARY AND OUTLOOK

SPARSITY-PROMOTING OPTIMAL CONTROL

• **OBJECTIVE**

 \star promote sparsity of F

Sparsity-promoting optimal control

- $\mathbf{card}\,(F)$ number of non-zero elements of F
 - $\gamma > 0$ performance vs sparsity tradeoff

Fardad, Lin, Jovanović, ACC '11

Lin, Fardad, Jovanović, IEEE TAC '13

Convex relaxations of card(F)

$$\ell_1$$
 norm: $\sum_{i,j} |F_{ij}|$
weighted ℓ_1 norm: $\sum_{i,j} w_{ij} |F_{ij}|, \quad w_{ij} \ge 0$

• Cardinality vs weighted ℓ_1 norm

$$\{w_{ij} = 1/|F_{ij}|, F_{ij} \neq 0\} \Rightarrow \operatorname{card}(F) = \sum_{i,j} w_{ij} |F_{ij}|$$

Convex relaxations of card(F)

 ℓ_1 norm: $|F_{ij}|$ i, jweighted ℓ_1 norm: $w_{ij} |F_{ij}|, w_{ij} \ge 0$ i, j

• Cardinality vs weighted ℓ_1 norm

$$\{w_{ij} = 1/|F_{ij}|, F_{ij} = 0\} \Rightarrow \operatorname{card}(F) = w_{ij}|F_{ij}|$$

RE-WEIGHTED SCHEME

***** use gains from previous iteration to form weights

$$w_{ij}^+ = \frac{1}{|F_{ij}| + \varepsilon}$$

Candès, Wakin, Boyd, J. Fourier Anal. Appl. '08

A non-convex relaxation of card(F)

Candès, Wakin, Boyd, J. Fourier Anal. Appl. '08

CLASSES OF CONVEX PROBLEMS

Optimal actuator/sensor selection

• **OBJECTIVE:** identify row-sparse feedback gain

- CHANGE OF VARIABLES: Y := F X
 - \star convex dependence of J on X and Y
 - *** row-sparse structure preserved**

• OPTIMAL ACTUATOR SELECTION

***** admits SDP characterization

Polyak, Khlebnikov, Shcherbakov, ECC '13

Münz, Pfister, Wolfrum, IEEE TAC '14

Dhingra, Jovanović, Luo, CDC '14

Design of undirected consensus networks

dynamics: $\dot{x} = -Lx + d + u$

control: u = -Fx

objective: $J = \lim_{t \to \infty} \mathbf{E} \left(x^T(t) \mathbf{Q} x(t) + u^T(t) \mathbf{R} u(t) \right)$

Design of undirected consensus networks

dynamics:
$$\dot{x} = -Lx + d + u$$

control:
$$u = -Fx$$

objective:
$$J = \lim_{t \to \infty} \mathbf{E} \left(x^T(t) \mathbf{Q} x(t) + u^T(t) \mathbf{R} u(t) \right)$$

convex characterization

minimize trace $(X) + \gamma \mathbb{1}^T Y \mathbb{1}$

subject to $\begin{bmatrix} X & \begin{bmatrix} Q^{1/2} \\ -R^{1/2} F \end{bmatrix} \\ Q^{1/2} & -F R^{1/2} & F + L + \mathbb{1}\mathbb{1}^T/n \end{bmatrix} \succeq 0$ $F \mathbb{1} = 0, \quad -Y_{ij} \leq W_{ij} F_{ij} \leq Y_{ij}$

Lin, Fardad, Jovanović, Allerton '12

Zelazo, Schuler, Allgöwer, SCL '13

Hassan-Moghaddam & Jovanović, arXiv:1506.03437

Diagonal modifications of positive systems

$$\dot{x} = \left(A + \underbrace{u_k}_k D_k \right) x + d$$

 $A - \text{Metzler matrix} (A_{ij} \ge 0, i = j)$

 D_k – diagonal matrices
Diagonal modifications of positive systems

$$\dot{x} = A + \underbrace{u_k D_k}_k x + d$$

 $A - \text{Metzler matrix} (A_{ij} \ge 0, i = j)$

 D_k – diagonal matrices

• EXAMPLES

combination drug therapy

 x_i mutates to x_j at rate A_{ji} u_k kills x_i at rate $(D_k)_{ii}$

★ leader selection in directed networks

Rantzer & Bernhardsson, CDC '14

Jonsson, Matni, Murray, CDC '14

Dhingra, Colombino, Jovanović, ECC '16

Parameterized family of feedback gains

CASE STUDY: WIDE-AREA CONTROL

Dörfler, Jovanović, Chertkov, Bullo, IEEE TPWRS '14 Wu, Dörfler, Jovanović, IEEE TPWRS '16

http://people.ece.umn.edu/users/mihailo/software/lqrsp/wac.html

Electro-mechanical oscillations in power systems

Local oscillations

- \star single generators swing relative to the rest of the grid
- * typically damped by Power System Stabilizers (PSSs)

Inter-area oscillations

- * groups of generators oscillate relative to each other
- * associated with dynamics of power transfers

Inter-area oscillations

Blackout of Aug. 10, 1996

\star resulted from instability of the $0.25\,\mathrm{Hz}$ mode

western interconnected system: California-Oregon power transfer:

Slow coherency theory

• WHERE ARE THE INTER-AREA MODES COMING FROM?

***** slow coherency theory

Chow, Kokotović, et al. '78, '82

time

Case study: IEEE New England Power Grid

- MODEL FEATURES
 - * detailed sub-transient generator models
 - * exciters
 - ★ carefully tuned PSS data

Preview of a key result

• FEEDBACK GAIN STRUCTURE

fully decentralized controller \Rightarrow nearly centralized performance

 $\star~10\%$ degradation relative to the optimal centralized controller

*** optimal retuning** of the decentralized PSS gains

An example: swing equation

$$M\ddot{\theta} + D\dot{\theta} + \boldsymbol{L}\boldsymbol{\theta} = d + u$$

L – Laplacian matrix

 \downarrow

only relative angle differences enter into dynamics

Performance index

• ENERGY OF POWER NETWORK

★ inspired by slow coherency theory

$$J := \lim_{t \to \infty} \mathbf{E} \left(\theta^T(t) \, \mathbf{Q}_{\theta} \, \theta(t) + \dot{\theta}^T(t) \, M \, \dot{\theta}(t) + u^T(t) \, u(t) \right)$$
$$Q_{\theta} := I - (1/N) \, \mathbb{1} \, \mathbb{1}^T$$

$\star Q_{\theta}$ – penalizes deviation from average

$$\bar{\theta} := (1/N) \, \mathbb{1}^T \, \theta$$
$$\downarrow$$

not detectable from Q_{θ}

Structural constraints

• ZERO E-VALUE ASSOCIATED WITH THE AVERAGE MODE

open-loop:
$$A \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

closed-loop: $(A - B_2 K) \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Coordinate transformation

• ELIMINATE THE AVERAGE-MODE

columns of $U - \text{form an orthonormal basis of } \mathbb{1}^{\perp}$

Sparsity-promoting optimal control

$$\star F = KT - to eliminate the average-mode$$

 $\star \| F T^T \|_1$ - not separable in the elements of F

• OPTIMAL CONTROL PROBLEM

$$\begin{array}{ll} \underset{F, K}{\text{minimize}} & J(F) + \gamma \| K \|_1 \\ \text{subject to} & F T^T - K = 0 \end{array}$$

Performance vs sparsity

Information exchange network

Sparsity pattern of \boldsymbol{K}

- local
- long-range interactions

Information exchange network

Sparsity pattern of \boldsymbol{K}

- local
- long-range interactions

Response to stochastic forcing

• WHITE-IN-TIME FORCING

$$\mathbf{E} (d(t_1) d^*(t_2)) = I \,\delta(t_1 - t_2)$$

***** Hilbert-Schmidt norm

power spectral density:

$$\|H(\omega)\|_{\mathrm{HS}}^2 = \operatorname{trace}\left(H(\omega) H^*(\omega)\right) = \sigma_i^2(\omega)$$

\star H_2 norm

variance amplification:

$$\|H\|_{2}^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \|H(\omega)\|_{\mathrm{HS}}^{2} d\omega$$

Open-loop dynamics: power spectral density

- ★ resonant peak 1: inter-area modes 2, 3, 4, 5
- ★ resonant peak 2: inter-area mode 1

Open-loop vs closed-loop systems

 \star low frequencies: 10% performance degradation

Performance comparison: block-sparse vs centralized

5.5% non-zero elements in F

Re-design of fully-decentralized controllers

***** preserves rotational symmetry

Wu, Dörfler, Jovanović, IEEE TPWRS '16

ADDITIONAL EXAMPLES

www.umn.edu/~mihailo/software/lqrsp/

Mass-spring system

Performance comparison: sparse vs centralized

Mass-spring system

Performance comparison: sparse vs centralized

fully-decentralized

Network with $100 \ {\rm nodes}$

 $\alpha(i, j)$: Euclidean distance between nodes *i* and *j*

Motee & Jadbabaie, IEEE TAC '08

Performance comparison: sparse vs centralized

communication graph of a truncated centralized gain

card(F) = 7380 (36.9%)

non-stabilizing

identified communication graph

Sparsity-promoting consensus algorithm

identified communication graph

Q := deviation from average

$$\frac{J - J_{\text{all-to-all}}}{J_{\text{all-to-all}}} \approx 82\%$$

Hassan-Moghaddam & Jovanović, arXiv:1506.03437

ALGORITHM

Method of multipliers

minimize
$$J(F) + \gamma g(F)$$

• Step 1: introduce an additional variable/constraint

minimize
$$J(F) + \gamma g(G)$$

subject to $F - G = 0$

benefit: decouples J and g

Method of multipliers

minimize
$$J(F) + \gamma g(F)$$

• Step 1: introduce an additional variable/constraint

minimize
$$J(F) + \gamma g(G)$$

subject to $F - G = 0$

benefit: decouples J and g

• Step 2: introduce augmented Lagrangian

$$\mathcal{L}_{\rho}(F,G;\Lambda) = J(F) + \gamma g(G) + \langle \Lambda, F - G \rangle + \frac{\rho}{2} \|F - G\|_{F}^{2}$$

Step 3: use MM for augmented Lagrangian minimization

$$\mathcal{L}_{\rho}(F,G;\Lambda) = J(F) + \gamma g(G) + \langle \Lambda, F - G \rangle + \frac{\rho}{2} \|F - G\|_{F}^{2}$$

METHOD OF MULTIPLIERS

 $(F^{k+1}, G^{k+1}) := \operatorname{argmin}_{F, G} \mathcal{L}_{\rho^{k}}(F, G; \Lambda^{k})$ $\Lambda^{k+1} := \Lambda^{k} + \rho^{k} (F^{k+1} - G^{k+1})$

Step 4: Polishing – back to structured optimal design

identifies sparsity patterns

 $\star MM$

provides good initial condition for structured design
Step 4: Polishing – back to structured optimal design

identifies sparsity patterns

 $\star MM$

provides good initial condition for structured design

***** optimality conditions for the structured problem

$$(A - B_2 \mathbf{F})^T \mathbf{P} + \mathbf{P} (A - B_2 \mathbf{F}) = -(Q + \mathbf{F}^T R \mathbf{F})$$
$$(A - B_2 \mathbf{F}) \mathbf{X} + \mathbf{X} (A - B_2 \mathbf{F})^T = -B_1 B_1^T$$
$$[(R \mathbf{F} - B_2^T \mathbf{P}) \mathbf{X} \circ \mathbf{I}_{\mathcal{S}} = 0$$

 $I_{\mathcal{S}}$ - structural identity

Lin, Fardad, Jovanović, IEEE TAC '11

Proximal operator and Moreau envelope

• **PROXIMAL OPERATOR**

$$\mathbf{prox}_{\mu g}(V) := \underset{G}{\operatorname{argmin}} g(G) + \frac{1}{2\mu} \|G - V\|_{F}^{2}$$

MOREAU ENVELOPE

$$M_{\mu g}(V) := \inf_{G} g(G) + \frac{1}{2\mu} \|G - V\|_{F}^{2}$$

Proximal operator and Moreau envelope

• **PROXIMAL OPERATOR**

$$\mathbf{prox}_{\mu g}(V) := \underset{G}{\operatorname{argmin}} g(G) + \frac{1}{2\mu} \|G - V\|_{F}^{2}$$

MOREAU ENVELOPE

$$M_{\mu g}(V) := \inf_{G} g(G) + \frac{1}{2\mu} \|G - V\|_{F}^{2}$$

* continuously differentiable

even when g is not

$$\nabla M_{\mu g}(V) = \frac{1}{\mu} \left(V - \mathbf{prox}_{\mu g}(V) \right)$$

Parikh & Boyd, FnT in Optimization '14

Proximal augmented Lagrangian

$$\mathcal{L}_{\rho}(F,G;\Lambda) = J(F) + \underbrace{\gamma g(G) + \frac{\rho}{2} \|G - (F + (1/\rho)\Lambda)\|_{F}^{2}}_{\sim} - \frac{1}{2\rho} \|\Lambda\|_{F}^{2}$$

 \star minimize over G

$$G^{\star} = \operatorname{prox}_{(\gamma/\rho)g}(F + (1/\rho)\Lambda)$$

 \star evaluate \mathcal{L}_{ρ} at G^{\star}

$$\mathcal{L}_{\rho}(F;\Lambda) := \mathcal{L}_{\rho}(F, \mathbf{G}^{\star}(F,\Lambda);\Lambda)$$
$$= J(F) + \gamma M_{(\gamma/\rho)g}(F + (1/\rho)\Lambda) - \frac{1}{2\rho} \|\Lambda\|_{F}^{2}$$

continuously differentiable

Method of multipliers

$$F^{k+1} = \operatorname{argmin}_{F} \mathcal{L}_{\rho^{k}}(F; \Lambda^{k})$$
$$\Lambda^{k+1} = \gamma \nabla M_{(\gamma/\rho^{k})g}(F^{k+1} + (1/\rho^{k})\Lambda^{k})$$

- FEATURES
 - ★ outstanding practical performance
 - \star nonconvex J: convergence to a local minimum
 - \star *F*-minimization: differentiable problem
 - \star adaptive $\rho\text{-update}$

Dhingra & Jovanović, ACC '16

Dhingra & Jovanović, arXiv:1610.04514

• G-UPDATE IN SPARSITY-PROMOTING PROBLEM

 \mathbf{O}

Related effort

- SPARSITY-PROMOTING H_∞ CONTROL Schuler, Li, Lam, Allgöwer, IJC '11 Schuler, Münz, Allgöwer, IFAC '12
- Systems with symmetries

Dhingra & Jovanović, ACC '15 Wu & Jovanović, SCL '17

• CONVEX RELAXATIONS

Lavaei, Allerton '13 Fazelnia, Madani, Lavaei, CDC '14 Fardad & Jovanović, ACC '14

• ATOMIC NORM REGULARIZATION

Matni, CDC '13; IEEE TCNS '17; Matni & Chandrasekaran, IEEE TAC '16

• SYSTEM-LEVEL SYNTHESIS

Wang, Matni, Doyle, IEEE TAC '17 (submitted)

Summary

• SPARSITY-PROMOTING OPTIMAL CONTROL

★ Performance vs sparsity tradeoff

Lin, Fardad, Jovanović, IEEE TAC '13

Jovanović & Dhingra, EJC '16

★ Software

www.umn.edu/~mihailo/software/lqrsp/

- ONGOING EFFORT
 - * Leader selection in large dynamic networks

Lin, Fardad, Jovanović, IEEE TAC '14

* Optimal synchronization of sparse oscillator networks

Fardad, Lin, Jovanović, IEEE TAC '14

* Optimal design of distributed integral action

Wu, Dörfler, Jovanović, ACC '16

Acknowledgments

Makan Syracuse

Fu UTRC

Neil U of M

Xiaofan Siemens

Sepideh USC

Florian **ETH Zürich**

SUPPORT

NSF Award ECCS-14-07958

AFOSR Award FA9550-16-1-0009

(Program manager: Kishan Baheti) (Program manager: Frederick Leve)