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Background and motivation: Issues with P2P energy trading 

Compare three MARL algorithms: PPO, MADDPG, 
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Numerical results 
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Conceptual Models of TSO-DSO Coordination 

Source: A. G. Givisez, K. Petrou and L. F. Ochoa, A Review on TSO-DSO 
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Peer-to-peer trading (among DERs and consumers) over
shared networks – Our focus

Continuous-time trading: continuous double-auction

Discrete-time trading (by rounds, x-hour ahead) – This work
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Direct load control (DER aggregation) 

DSO-operated wholesale-style market – DLMP 
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A Conceptual Peer-to-Peer Retail (Local) Energy Market 

Source: https://100percentrenewables.com.au/peer-to-peer-energy-trading/ 8/ 26 
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– Solution: control automation

A wholesale-market-like uniform price auction will NOT work:

- All zero-marginal resources

- Consumers/prosumers do not know there own valuation of energy
consumption/generation (due to zero marginal cost)

- Uncleared demand in a P2P market need to buy from utility/DSO at the
utility rate (UR); uncleared energy from DERs need to sell to utility/DSO
at feed-in tarif (FIT) (UR > FIT) – UR and FIT are then de facto reserve
prices of P2P trading, which are publicly known! =⇒ Any double-auction
design will lead to bang-bang outcomes (unless supplyt = demandt).
[Zhao et al., 2022]

P2P tradings only fnancial transactions; how to deal with shared network
constraints – Solution: Add (fake) fnancial penalties for constraint
violation in learning algorithms

Background and Motivation MARL Frameworks Numerical Results 

Potential Issues of P2P Energy Trading 

Consumers/prosumers do not have the expertise, nor the time to bid, say, 
every hour 
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Market Clearing Price under SDR

Pt := P(SDRt) :=

(
(FIT − UR) · SDRt + UR, 0 ≤ SDRt ≤ 1

FIT , SDRt > 1.

–

Background and Motivation MARL Frameworks Numerical Results 

Alternative Market Clearing Mechanism SDR [Liu et al., 2017] 

Supply-Demand Ratio 

Let bi,t be bid/ask of agent i at time t: 
bi,t > 0 (sell); bi,t < 0 (buy). The supply-
demand ratio (SDR): X 

bi,t 
i∈St

SDRt := X . 
− bi,t 

i∈Bt 
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Action (in continuous space)

ai,t := (aqi,t , a
e
i,t) ∈ Ai = Aq

i ×A
e
i – (reactive power injection/withdraw, energy

charge/discharge) (Underlying assumption: PV/battery connected to a smart inverter:
can set reactive power setpoints within a range)

The actual bids = net energy of PV generation minus baseload demand (of real
power) and charge/discharge to the battery:

bi,t =

(
PVi,t − dp

i,t −min(aei,t ,
ei−ei,t

ηc
i

), if aei,t ≥ 0,

PVi,t − dp
i,t −max(aei,t ,−ei,t · η

d
i ), otherwise,

where ηci and ηdi are the charging and discharging efciency of agent i ’s battery, resp.,
and ei is the battery capacity.

Background and Motivation MARL Frameworks Numerical Results 

Single-agent (Agent i ’s) RL Problem 

State Variables (in continuous space) 

si,t := (dp , dq , vi,t , ei,t , PVi,t ) ∈ S⟩ – (baseload real power, baseload reactive power, i,t i,t 
voltage magnitude, battery state of charge, PV (real power) generation) 
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Reward function

ri,t = Rm
i,t(a

e
i,t ; a

e
−i,t , st) + Rv (ai,t ; a−i,t , st)/I .

Rm
i,t :=


Ii∈Bt ×

h
SDRt · Pt · bi,t + (1− SDRt) · UR · bi,t

i
+Ii∈St ×

�
Pt · bi,t

�
, 0 ≤ SDRt ≤ 1

FIT · bi,t , SDRt > 1,

Background and Motivation MARL Frameworks Numerical Results 

State Transition and Reward Function 

Battery state of charge (ei,t ) 

ei,t+1 := Ei (ei,t , a e 
i,t ) := max 

n 
min 

h 
ei,t + ηc 

i max(a e 
i,t , 0) + 

1 

ηd 
i 

min(a e 
i,t , 0), ei 

i 
, 0 
o 
, 
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If voltage violation > 0, all bids are rejected; agents resubmit bids

V
j
/V j : upper/lower voltage limit of Bus j

Vj,t : voltage magnitude at Bus j after each agent makes the decision, calculated
by solving a bus injection model – Bids validation (done by DSO or Blockchain)

pk =
NX
j=1

|Vk ||Vj |(Gkj cos(αk − αj ) + Bkj sin(αk − αj )),

qk =
NX
j=1

|Vk ||Vj |(Gkj sin(αk − αj )− Bkj cos(αk − αj )),

for k = 1, 2, . . . ,N,

–

Background and Motivation MARL Frameworks Numerical Results 

Reward Function (cont.) Constraint Violation Penalty 

X h i 
Rv /I = −λ max(0, |Vj,t | − V j ) + max(0, V j − |Vj,t |) /I , 

j :Bus 
t 

I – the no. of agents, λ – an arbitrary large number (the fake penalty for 
voltage violation) 
Assumption – The voltage violation is equally shared among all agents (again, 
this is NOT real, only for training) 
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Background and Motivation MARL Frameworks Numerical Results 

MARL with Continuous State & Action Spaces 

It’s all about policy gradient! 

For a generic policy π(a|s, θ) and a performance measure J(θ), 

θt+1 = θt + α \∇J(θt ). 
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Three MARL Frameworks 
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Policy Gradient

- Purely decentralized: ∇θi J(θi ) = Es∼ρθ,ai∼πθi

�
∇θi log πθi (ai |si )Q

π
i (si ; ai )

�
(PPO

implementation: [Feng et al., 2023])

- MADDGP: ∇θi J(θi ) = Es∼ρθ,ai∼πθi

�
∇θi log πθi (ai |si )Q

π
i (s; a1, . . . , aI )

�
- Consensus: Expected policy gradient (EPG) ∇θi J(θi ) = Es∼ρθ,a−i∼πθ−i

I Qθi
(s, a−i ),

where I Qθi
(s, a−i ) = Eai∼πθi

∇θi log πθi (ai |s)Q
π
i (s; a1, . . . , aI ).

To deal with the centralized critic function, each agent i use Q̃(ai , a−i ;wi,t) to

approximate Qπ
i (s; a1, . . . , aI ). Agent i use weighted average of wj

t , all j ’s in i ’s
neighbor, to obtain wi,t+1.

 

–

–

Background and Motivation MARL Frameworks Numerical Results 

Three MARL Frameworks The Details 

Performance measure J 

- Pure decentralized and MADDPG Ji (θi ) = Eπθi 
[ 

TX 
t=0 

γt 
i ri,t ] 

- Consensus: J(θ) = Eπθ 

" 
lim 

T →∞ 

1 

T 

TX 
t=0 

1 

I 

IX 
i=1 

ri,t 

!# 
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π(si ; ai ) (PPO,ai ∼πθi
i 

implementation: [Feng et al., 2023]) � � 
- MADDGP: ∇θi J(θi ) = E s∼ρθ ,ai ∼πθi 

∇θi log πθi (ai |si )Qi 
π (s; a1, . . . , aI ) 

- Consensus: Expected policy gradient (EPG) ∇θi J(θi ) = E s∼ρθ I Q (s, a−i ),,a−i ∼πθ−i θi 

where I Q (s, a−i ) = Eai ∼πθi 
∇θi log πθi (ai |s)Qi 

π (s; a1, . . . , aI ).θi 
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Three MARL Frameworks The Details 

Performance measure J 

- Pure decentralized and MADDPG Ji (θi ) = Eπθi 
[ 

TX 
t=0 

γt 
i ri,t ] 

- Consensus: J(θ) = Eπθ 

" 
lim 

T →∞ 

1 

T 

TX 
t=0 

1 

I 

IX 
i=1 

ri,t 

!# 

Policy Gradient � � 
- Purely decentralized: ∇θi J(θi ) = E s∼ρθ ,ai ∼πθi 

∇θi log πθi (ai |si )Qi 
π(si ; ai ) (PPO 

implementation: [Feng et al., 2023]) � � 
- MADDGP: ∇θi J(θi ) = E s∼ρθ ∇θi log πθi (ai |si )Qi 

π (s; a1, . . . , aI ),ai ∼πθi 

- Consensus: Expected policy gradient (EPG) ∇θi J(θi ) = E s∼ρθ I Q (s, a−i ),,a−i ∼πθ−i θi 

where I Q (s, a−i ) = Eai ∼πθi 
∇θi log πθi (ai |s)Qi 

π (s; a1, . . . , aI ).θi 
˜To deal with the centralized critic function, each agent i use Q(ai , a−i ; wi,t ) to 

approximate Qπ (s; a1, . . . , aI ). Agent i use weighted average of wt
j , all j ’s in i ’si 

neighbor, to obtain wi,t+1. 17/ 26 
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Illustration of the Consensus MARL lgorithm 

Global state variables
The PV power generation, 

Active/reactive power of base 
load, voltage magnitude, SOC of 

all the agents

Actions 1:
Reactive power production,

charging/discharging

1 2

Actor 1
(Policy)

Critic 1
(Value 

function)

Actor 2
(Policy)

Critic 2
(Value 

function)

Distribution 
network & P2P

market

Global state variables
The PV power generation, 

Active/reactive power of base
load, voltage magnitude, SOC of 

all the agents

Actions 2:
Reactive power production, 

charging/discharging

Consensus update: take 
average of the parameters
of its own and neighbor’s 

critic networks 

Action 1 Action 2Agent 1’s 
reward & joint 

actions

Agent 2’s 
reward & joint 

actions
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Part III – Numerical Results 
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Simulation Inputs 

Figure: Test case: IEEE 13-bus feeder 

UR and FIT: PUR = 14 ¢/KWh, PFIT = 5 ¢/KWh. 
Agents: 12 prosumers, one at each bus (except the substation) 
PV and storage per agent: PV: 30KW, storage: 50KWh, charging/discharging 
efciency: 0.95/0.9 
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Input Data (cont.) 

Figure: Average daily baseload Figure: Daily PV output shape 
shape 
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Figure:
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Numerical Results Rewards and Voltage Violation 

Figure: 30-epi. moving avg. of 
episodic total reward 
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Numerical Results Rewards and Voltage Violation 

Figure:Figure: 30-epi. moving avg. of 
Voltage violation [0.96pu, 1.04pu]episodic total reward 
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Market Clearing Price (under SDR) 

Figure: Hourly clearing prices (the last 3 days) 
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But, the devil is in the details!

Future Research

Scalability

Cybersecurity: Byzantine agents [Figura et al., 2021]

Real-time implementation (need to couple with demand and solar
prediction)
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Summary and Future Research 

Summay 

MARL is promising in P2P energy trading 

- Can realize control-automation 
- Decentralized learning among networked agents can learn to 
avoid constraint violation 
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Thank you! 
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