

NREL AES Workshop July 2022

Physics-aware and Risk-aware Machine Learning for Power System Operations

Hao Zhu

Assistant Professor of ECE Kilby/TI Endowed Faculty Fellow The University of Texas at Austin

Acknowledgements: Shanny Lin, Shaohui Liu, Kyung-bin Kwon, and Yuqi Zhou NSF Grants 1802319, 1952193, 2130706, DOE-EPRI GREAT-Data

Power of AI/ML

- Unprecedented opportunities offered by diverse sources of data
 - Synchrophasor and IED data
 - Smart meter data
 - Weather data
 - GIS data,

How to harness the power of ML to tackle problem-specific challenges in real-time power system decision making?

The University of Texas at Austin Electrical and Computer Engineering

Mar 15, 2019, 07:37am EDT | 21,849 views

How AI Can And Will Predict Disasters

Naveen Joshi Former Contributor COGNITIVE WORLD Contributor Group ①

TECHNOLOGY 23 September 2017

SUSTAINABLE ENERGY

Combining A.I. and human knowledge could transform how power grids work

UBLISHED FRI, SEP 27 2019+4:55 AM EDT | UPDATED FRI, SEP 27 2019+4:55 AM EDT

Overview

We visit three problems that use domain knowledge to better design learning models that are physics-informed and risk-aware

The University of Texas at Austin Electrical and Computer Engineering

Part I: Topology-aware Learning in Large-scale Power Systems

ML for optimal power flow (OPF)

> Attain a pre-trained OPF input-output mapping from available samples

Existing work and our focus

- Integration of renewable, flexible resources increases the grid variability and motivates realtime, feasible OPF via training a neural network (NN)
 - Warm start the search for ac feasible solution [Baker '19]
 - Feasible domain to reduce limit violation [Zamzam et al'20][Zhao et al'21]
 - KKT conditions based regularization [Zhang et al'22] [Nellikkath et al'22]
- Connection to the duality analysis of convex OPF [Chen et al'20] [Singh et al'20]
- Rely on FCNN architecture and cannot adapt to varying topology

Focus: graph learning approach for *complexity reduction & topology adaptivity*

Real-time OPF

- ▶ Power network modeled as a graph $G = (\mathcal{V}, \mathcal{E})$ with *N* nodes
- > ac-OPF for all nodal injections

 $\min_{\mathbf{p},\mathbf{q},\mathbf{v}} \quad \sum_{i=1}^{N} c_i(p_i)$ s.t. $\mathbf{p} + j\mathbf{q} = \operatorname{diag}(\mathbf{v})(\mathbf{Y}\mathbf{v})^*$ $\underline{\mathbf{V}} \le |\mathbf{v}| \le \overline{\mathbf{V}}$ $\underline{\mathbf{p}} \le \mathbf{p} \le \overline{\mathbf{p}}$ $\underline{\mathbf{q}} \le \mathbf{q} \le \overline{\mathbf{q}}$ $s_{ij}(\mathbf{v}) \le \overline{s}_{ij}, \quad \forall (i,j) \in \mathcal{E}$ Nodal input: $\mathbf{x}_i \triangleq [\bar{p}_i, \underline{p}_i, \bar{q}_i, \underline{q}_i, \mathbf{c}_i] \in \mathbb{R}^d$

power limits + costs

Nodal output: optimal p/q

Each FCNN layer has $\mathcal{O}(N^2)$ parameters!

Topology dependence

- [Owerko et al'20] using graph learning to predict p/q
- But topology dependence (locality) of output label is crucial!
- Locational marginal price from (very few) congested lines
- \succ Voltage magnitude $|\mathbf{v}|$ approximated using q injection

Locational marginal price (LMP) map

Graph NN (GNN)

- Input formed by nodal features as rows $\mathbf{X}^0 = \{\mathbf{x}_i\} \in \mathbb{R}^{N \times d}$
- Solve $\mathbf{K}^{\ell+1} = \sigma \left(\mathbf{W}^{\ell} \mathbf{X}^{\ell} \mathbf{H}^{\ell} + \mathbf{b}^{\ell} \right)$
 - Topology-based graph filter $\mathbf{W}^{\ell} \in \mathbb{R}^{N \times N}$ $[\mathbf{W}^{\ell}]_{ij} = 0 \text{ if } (i, j) \notin \mathcal{E}$
 - Feature filters $\{\mathbf{H}^{\ell}\}$ for higher-dim. nonlinearity
- ➢ GNN used for grid fault location [Li-Deka'21]

Hamilton, William L. "Graph representation learning." 2020. <u>https://www.cs.mcgill.ca/~wlh/grl_book/</u>

The University of Texas at Austin Electrical and Computer Engineering

Prop. 1 (GNN complexity): If lines are sparse $|\mathcal{E}| \sim \mathcal{O}(|\mathcal{V}|)$ and let $D = \max_t \{d_t\}$, then the **number of parameters** for each GNN layer is $\mathcal{O}(N + D^2)$.

Compared to FCNN's $\mathcal{O}(N^2)$

From GNN outputs to OPF variables

- LMP decides (feasible) *p* from economics
- > Decoupled (d-)PF approximates angle

 $\hat{\boldsymbol{p}}_{i} = \operatorname{argmin}_{p_{i} \leq p_{i} \leq \bar{p}_{i}} c_{i}(p_{i}) - \hat{\pi}_{i}p_{i}$ $\hat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}_{o} + \mathbf{J}_{p\theta}^{-1}(\hat{\mathbf{p}} - \mathbf{p}_{o})$

> GNN outputs of LMP and |v| can fully determine the power flow

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Topology-aware Graph Neural Networks for Learning Feasible and Adaptive AC-OPF Solutions," submitted. https://arxiv.org/pdf/2205.10129

Feasibility regularization (FR)

> Loss function for predicting LMP and $|\mathbf{v}|$

$$\mathcal{L}(m{\phi}) := \|m{\pi}^* - \hat{m{\pi}}\|_2^2 + \||m{v}^*| - |\hat{m{v}}|\|_2^2 + \lambda_\infty \|m{\pi}^* - \hat{m{\pi}}\|_\infty$$

• Infinity-norm on LMP due to its larger variability than $|\mathbf{v}|$

- Network-wide line limits are difficult to satisfy
- $\succ \text{ FR to reduce line flow violations: } \mathcal{L}'(\phi) := \mathcal{L}(\phi) + \lambda \left\| \mathbb{P}_{[\mathbf{0},\infty]}[\hat{\mathbf{s}} \bar{\mathbf{s}}] \right\|_{1}$

Prop. 2 (*Feasibility*): ac-FR based OPF learning is a *fully feed-forward* NN. The proposed FR term still allows for efficient using *autograd* and *backpropagation*. The feasibility of both predicted $|\hat{\mathbf{v}}|$ and $\hat{\mathbf{P}}$ can be strictly enforced via projections, as well.

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Topology-aware Graph Neural Networks for Learning Feasible and Adaptive AC-OPF Solutions," submitted. https://arxiv.org/pdf/2205.10129

Benchmark results

- > 118-bus and 1354-bus for ac-opf
- Metrics: normalized MSE; line flow limit violation rate; model complexity
- GNN, FCNN, both + feasibility regularization (FR)

OPF learning under contingency

- Topology-agnostic NNs lack in transfer capability
 - Sample re-generation and re-training are time-consuming
- > OPF outputs tend to be stable under line outages
 - Thanks to stability of the eigen-space $span{\mathbf{U}}$ with $\mathbf{B}^{-1} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}$
 - LMP outputs slightly vary with the outages of multiple lines (of high capacity)
- We have established analytical bounds for this perturbation on graph subspace

Stability analysis

► Under line *k* outage, rank-one perturbations on $\mathbf{B}' = \mathbf{B} - \frac{1}{x_k} \mathbf{a}_k \mathbf{a}_k^\top$ and its inverse $(\mathbf{B}')^{-1} = \mathbf{B}^{-1} + \Delta_k = \mathbf{B}^{-1} + \frac{\mathbf{B}^{-1} \mathbf{a}_k \mathbf{a}_k^\top \mathbf{B}^{-1}}{x_k - \mathbf{a}_k^\top \mathbf{B}^{-1} \mathbf{a}_k}$ [Matrix inversion lemma]

► Difference between the corresponding (sub)spaces $d(span{\mathbf{U}}, span{\mathbf{U}'}) := \|\text{diag}(\sin \theta_1, \cdots, \sin \theta_{N-1})\|_F \text{ with } \quad \theta_i := \theta(\mathbf{u}_i, \mathbf{u}'_i)$

Prop. 3 (Bounded subspace difference): Let $\{\lambda_i\}_{i=1}^{N-1}$ and $\{\lambda'_i\}_{i=1}^{N-1}$ represent the respective positive eigenvalues of \mathbf{B}^{-1} and $(\mathbf{B}')^{-1}$ in non-increasing order. Consider the first *s* eigenvalues with the minimum separations $\delta \triangleq \min_{1 \le i \le s-1} (\lambda_i - \lambda_{i+1})$ and $\delta' \triangleq \min_{1 \le i \le s-1} (\frac{1}{\lambda_{i+1}} - \frac{1}{\lambda_i})$. We can bound the difference between the leading sub-spaces $span(\mathbf{U}_s) \triangleq span([\mathbf{u}_1, \cdots, \mathbf{u}_s])$ $d(span\{\mathbf{U}_s\}, span\{\mathbf{U}'_s\}) \le \min\left(\frac{\|\mathbf{\Delta}_k\|_F}{\delta}, \frac{2}{x_k \cdot \delta'}\right)$.

GNN topology transfer learning

- > Perturb the original system with the outages of 2-4 lines of high capacity
- Pre-trained GNN for the original system has reasonable error rates
 - warm-start the re-training using only half of samples
- GNN exhibits excellent adaptivity to the varying grid topology
 - Re-training takes *only 3-5 epochs* to converge to the original performance

Centralized load shedding

- Grid resilience challenged by resource variability and extreme weather
- Optimal load shedding (OLS) is a special case of ac-OPF

- Centralized optimization using system-wide information
- However, need very fast-speed communication links and computation capability
- Can we use ML to enable scalable OLS at each node using local information only?

The University of Texas at Austin Electrical and Computer Engineering

ML for decentralized load shedding

Each load center learns the decision rule from historical or synthetic scenarios


```
Input feature:
```

$$m{x}_i = \left[p_i^d, q_i^d, V_i', \{ p_{ij}' \}, \{ q_{ij}' \}, \omega_i'
ight]$$

Local reduction solutions:

$$\boldsymbol{y}_i = [p_i^s, q_i^s]$$

Yuqi Zhou, Jeehyun Park, and Hao Zhu, "Scalable Learning for Optimal Load Shedding Under Power Grid Emergency Operations," *PES General Meeting (PESGM)* 2022 (accepted) <u>https://arxiv.org/abs/2111.11980</u>

The University of Texas at Austin Electrical and Computer Engineering

Prediction under single line outage

- IEEE 14-bus system; quadratic cost functions
- All (N 1) contingency scenarios, under different load conditions (1000 samples for each scenario)

Part II: Risk-aware Learning for Voltage Safety in Distribution Grids

ML for distributed energy resources (DERs)

- Rising DERs at grid edge motivate scalable and efficient coordination to support the operations of connected distribution grids
 - Lack of *frequent*, *real-time* communications
 - Distribution control center may broadcast messages to every DER

Distribution Substation

Liu, Hao Jan, Wei Shi, and Hao Zhu. "Hybrid voltage control in distribution networks under limited communication rates." *IEEE Transactions on Smart Grid* 10.3 (2018): 2416-2427. Molzahn, Daniel K., et al. "A survey of distributed optimization and control algorithms for electric power systems." *IEEE Transactions on Smart Grid* 8.6 (2017): 2941-2962.

Prior work

- Scalable DER coordination as an instance of optimal power flow (OPF)
 - Kernel support vector machines [Karagiannopoulos et al' 19] [Jalali et al' 20]
 - Deep neural network for ac-OPF [Zamzam et al' 20][Gupta et al' 21] [Nellikkath et al' 21]
 - Deal with worst-case dc-OPF guarantees by post-analysis [Venzke et al' 20]
 - Reinforcement learning for dynamic coordination [Yang et al' 20] [Cao et al' 21]
- Enforcing network-wide constraints is challenging
 - Project OPF solutions for global learning [Zamzam et al' 20] [Jalali et al' 20]
 - Penalize the constraint violation via regularization [Karagiannopoulos et al' 19] [Pan et al' 19] [Yang et al' 20]
 - Chance-constrained formulation for optimization-and-learn [Gupta et al' 21]
- **Focus:** Use *statistical risks* to improve the safety of DER actions for (network-wide) limits

Centralized DER coordination

Controllable DER reactive power for voltage optimization

$$\mathbf{z} = \min_{\mathbf{q} \in \mathcal{Q}} \ loss(\mathbf{q})$$

s. to
$$\begin{bmatrix} \mathbf{X}\mathbf{q} + \mathbf{h}(\mathbf{y}) - \overline{\mathbf{v}} \\ -\mathbf{X}\mathbf{q} - \mathbf{h}(\mathbf{y}) + \underline{\mathbf{v}} \end{bmatrix} \le \mathbf{0}$$

- Q : available reactive power
- X : network matrix
- **y** : operating condition
- $\underline{\mathbf{v}}, \, \overline{\mathbf{v}}$: voltage limits

- Linearized DistFlow (LDF) model, even for multiphase systems, leads to quadratic programs
- > Centralized solutions require high communication rates and communication availability

Scalable design

- > Aim to predict from data to the optimal $\Phi(\mathbf{y}) \rightarrow \mathbf{z}$
- Scalable neural network (NN) architecture to obtain the mapping for each individual node n $\mathbf{y}_n^{t+1} = \sigma(\mathbf{W}_n^t \mathbf{y}_n^t + \mathbf{b}_n^t)$
 - $\boldsymbol{\varphi} := \{ \mathbf{W}_n^t, \mathbf{b}_n^t \}$: NN parameters
- Convergence analysis in our recent work[Kwon et al'22]
- The average loss under mean squared error (MSE)

$$\min_{\boldsymbol{\varphi}} f(\boldsymbol{\varphi}) := \frac{1}{K} \sum_{k=1}^{K} \ell\left(\Phi(\mathbf{y}_k; \boldsymbol{\varphi}), \mathbf{z}_k\right)$$

with $\ell(\Phi(\mathbf{y}_k; \boldsymbol{\varphi}), \mathbf{z}_k) = \|\Phi(\mathbf{y}_k; \boldsymbol{\varphi}) - \mathbf{z}_k\|_2^2$ for each sample k

Risk-aware learning

Conditional value-at-risk (CVaR) metric (empirical approx. of the worst-case mean)

$$\gamma_{\alpha}(\boldsymbol{\varphi}) := \frac{1}{\alpha K} \sum_{k=1}^{K} \ell(\Phi(\mathbf{y}_{k}; \boldsymbol{\varphi}), \mathbf{z}_{k}) \times \mathbb{1}\{\ell(\Phi(\mathbf{y}_{k}; \boldsymbol{\varphi}), \mathbf{z}_{k}) \geq v\}$$

•
$$\alpha \in (0,1)$$
 : significance level

• v : α -VaR

- Risk-aware learning going beyond MSE
 - $\min_{\boldsymbol{\varphi}} f(\boldsymbol{\varphi}) + \lambda \gamma_{\alpha}(\boldsymbol{\varphi})$
 - λ > 0 : hyperparameter balances between average and worst-case performances

Loss

Shanny Lin, Shaohui Liu, and Hao Zhu. "Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids," *Power Systems Computation Conference (PSCC) 2022 (accepted),* <u>https://arxiv.org/abs/2110.01490</u>

Features of CVaR metric

➢ In addition to *q*, consider *voltage deviation risk* (turns out numerically powerful)

$$\gamma_{\alpha}^{v}(\boldsymbol{\varphi}) := \frac{1}{\alpha K} \sum_{k=1}^{K} |v_{n}(\Phi(\mathbf{y}_{k};\boldsymbol{\varphi}))| \times \mathbb{1}\{|v_{n}(\Phi(\mathbf{y}_{k};\boldsymbol{\varphi}))| \ge v\}$$

≻ CVaR can be recast as a convex problem, using the projection operator $[a]_+ \triangleq \max\{0, a\}$:

$$\gamma_{\alpha}(\boldsymbol{\varphi}) := \min_{\beta \in \mathbb{R}} \left\{ \beta + \frac{1}{\alpha K} \sum_{k=1}^{K} \left[\ell \left(\Phi(\mathbf{y}_{k}; \boldsymbol{\varphi}), \mathbf{z}_{k} \right) - \beta \right]_{+} \right\}$$

- The optimal β turns out to be the α -VaR value
- But risk-aware learning is not convex due to nonlinear $\Phi(\cdot; \boldsymbol{\varphi})$
- \triangleright CVaR gradient evaluation can be simplified by replacing $[a]_+$ with soft projection (softplus)

Accelerated CVaR learning

Key challenge: the training efficiency with CVaR is worse than that of average loss

- Reduced sample number affecting the statistical significance of sample-based gradient estimation
- Gradient computation cost increased, as well
- Typical NN training uses subset of samples per iteration like the mini-batch method
- Accelerating the CVaR training by *selecting minibatches* with sufficient statistical significance

Shanny Lin, Shaohui Liu, and Hao Zhu. "Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids," *Power Systems Computation Conference (PSCC) 2022 (accepted)*, <u>https://arxiv.org/abs/2110.01490</u>

The University of Texas at Austin Electrical and Computer Engineering

Predicting reactive power *q*

- IEEE 123-bus test case with 6 DERs, each with its own controllable *q*
 - Decision rules are learned using local nodal measurements and some feeder head broadcast
- Prediction error is very close among all three approaches due to high prediction accuracy
- Proposed mini-batch selection algorithm (Alg1) reduces training time for CVaR

Computational Time					
Loss obj.	Epoch [s]	Total [s]			
MSE	0.52	46.48			
CVaR(qg)	1.07	38.70			
CVaR(qg)+Alg 1	0.61	35.63			

Reducing voltage deviation risk

- Further incorporated CVaR regularization on voltage deviation error
- CVaR metric can reduces the worst-case voltage deviation and leads to improved system safety
- Training time is accelerated using the proposed minibatch selection algorithm (Alg1)
 - Evan faster than the *q* prediction CVaR only case

Computational Time

Loss obj.	Epoch [s]	Total [s]
MSE	0.54	44.89
CVaR(qg,dv)	0.77	31.73
CVaR(qg,dv)+Alg 1	0.51	25.93

Part III: RL for Dynamical Resources using Efficient Representation

RL for dynamical grid resources

- DERs (energy storage/loads) and external inputs (price/weather) are dynamical
- → Motivate a RL approach to learn $a_t \leftarrow \pi(s_t)$
 - data-driven, not requiring the probability
 - adaptive to varying online conditions

Key Challenge: *abundant, heterogenous* resources at grid edge need powerful state/action *representation*

Chen, Xin, Guannan Qu, Yujie Tang, Steven Low, and Na Li. "Reinforcement learning for decision-making and control in power systems: Tutorial, review, and vision." <u>https://arxiv.org/abs/2102.01168</u>

The University of Texas at Austin Electrical and Computer Engineering

Electrical vehicle charging station (EVCS) problem

- Arriving EV *i* with demand $d_{i,t}$ and parking time $p_{i,t}$
- > EVCS decides which EVs to charge $(a_{i,t} = 1)$ from electricity at price ρ_t
- Clearly, the state/action space
 incurs high complexity due to large,
 time-varying dimensionality
- How to represent state/action to allow for efficient RL training?

An aggregation scheme

 $n_{t}^{(1)}$

<Aggregated State>

Kyung-Bin Kwon and H. Zhu, "Efficient representation for electric vehicle charging station operations using reinforcement learning," HICCS 2022 <u>https://arxiv.org/abs/2108.03236</u>

 $n_t^{(2)}$

 $n_t^{(3)}$

0

The University of Texas at Austin Electrical and Computer Engineering

 $n_t^{(0)}$

Laxity-based action reduction

Prop 1: If the EVCS total charging schedule $\{a_t\}_{t\in T}$ is feasible (corresponds to some feasible schedule for individual EVs that ensure all fully charged before departure), then Algorithm 1 can produce such a feasible schedule for all EVs.

Basically, LLF ensures the feasibility of the recovered actions

Proof idea: Any feasible schedule equivalent to one satisfying LLF [Wang et al'21]

Equivalence of state aggregation

- Ideally, we want the new state represents the same MDP
- This equivalence requires two conditions:
 - (i) **Reward homogeneity:** same reward for any states aggregated into the same new state
 - (ii) **Dynamic Homogeneity:** same transition kernel for any aggregated states

Prop 2: The original MDP for s_t/a_t is equivalent to the new one for s_t'/a_t using the total charging action. Accordingly, the optimal policy (or action) obtained from the new MDP through aggregation are equivalent to that for the original one.

Intuitions for dyn. homogeneity:

Under the LLF rule, charge either one of 2 EVs at the same laxity leads to the same transition of new state or aggregated state

The University of Texas at Austin Electrical and Computer Engineering Kyung-Bin Kwon and H. Zhu, "Efficient representation for electric vehicle charging station operations using reinforcement learning," HICCS 2022 https://arxiv.org/abs/2108.03236

Numerical tests

- > Daily charging at 15-min intervals (T = 96)
 - Realistic EV arrival model
 - ERCOT real-time price
- 20 daily scenarios for training; 5 for testing
- Comparing proposed Alg 2 with Alg. QE in [Wang et al'21] by approximating the Q-function

Convergence => further aggregation

- Parameter convergence
- Most weight parameters are very small; except for

 $\rho_t \text{ and } n_t^{(0)}$

- Remark: we can further reduce # of states by grouping higher-laxity EVs!
- Possible to consider nonlinear policies as well

Case study – testing result

	Test 1	Test 2	Test 3	Test 4	Test 5	Average
Alg. 2	-5016.2	-5022.6	-5009.5	-5012.8	-5007.8	-5013.8
Alg. QE	-5240.1	-5240.3	-5234.2	-5239.3	-5230.6	-5236.9
Increase (%)	4.27	4.15	4.29	4.32	4.26	4.26

Algorithm QE: Estimating an approximate Q-function [Wang et al'21]

- ➢ Alg. 2 improves the reward of Alg. QE [Wang et al'21] by ~4.2%
- Example charging profile indicates Alg. 2 very sensitive to price peaks and strategically reducing *a_t*, while Alg. QE fails to do so

Summary

- > I: Generalized transfer capability in graph-based learning
- II: Convergence analysis and strengthened safety guarantees
- III: Comprehensive grid-edge resource coordination

Related Work

- Shaohui Liu, Chengyang Wu, and Hao Zhu. "Topology-aware Graph Neural Networks for Learning Feasible and Adaptive AC-OPF Solutions," submitted. <u>https://arxiv.org/pdf/2205.10129</u>
- Kyung-bin Kwon and Hao Zhu, "Reinforcement Learning Based Optimal Battery Control Under Cycle-based Degradation Cost," IEEE Trans. Smart Grid (accepted), <u>https://ieeexplore.ieee.org/abstract/document/9789478</u>
- Kyung-bin Kwon, Lintao Ye, Vijay Gupta, and Hao Zhu, "Model-free Learning for Risk-constrained Linear Quadratic Regulator with Structured Feedback in Networked Systems," submitted <u>https://arxiv.org/abs/2204.01779</u>
- M. Jalali, V. Kekatos, S. Bhela, and H. Zhu, "Inferring power system dynamics from synchrophasor data using Gaussian processes," *IEEE Trans. Power Systems*, <u>https://ieeexplore.ieee.org/abstract/document/9693288</u>
- Yuqi Zhou, Jeehyun Park, and Hao Zhu, "Scalable Learning for Optimal Load Shedding Under Power Grid Emergency Operations," *PES General Meeting (PESGM)* 2022 (accepted) <u>https://arxiv.org/abs/2111.11980</u>
- Shanny Lin, Shaohui Liu, and Hao Zhu. "Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids," *Power Systems Computation Conference (PSCC)* 2022 (accepted), <u>https://arxiv.org/abs/2110.01490</u>
- S. Lin and H. Zhu, "Enhancing the Spatio-temporal Observability of Grid-Edge Resources in Distribution Grids," *IEEE Trans. Smart Grid*, 2021. DOI: 10.1109/TSG.2021.3107239
- Kyung-Bin Kwon and H. Zhu, "Efficient representation for electric vehicle charging station operations using reinforcement learning," HICCS 2022 <u>https://arxiv.org/abs/2108.03236</u>
- Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Graph Neural Networks for Learning Real-Time Prices in Electricity Market." *ICML Workshop on Tackling Climate Change with Machine Learning*, 2021. <u>https://arxiv.org/abs/2106.10529</u>

Learning and Optimization for Smarter Electricity Infrastructure

<u>haozhu@utexas.edu</u> <u>http://sites.utexas.edu/haozhu/</u> @HaoZhu6

Learning for grid resilience Learning for dynamical resources Learning for inverter-based resources

Thank you!

....