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Safe Decision Making w

 Power systems have several regulated quantities that
must stay within prescribed ranges:
— Bus voltage
— Generator frequencies
— Line flows

« Currently we have wide operating margins, but this is
becoming increasing difficult

* Adaptive control and decisions are useful, and we
focus on the computational aspects
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Real-time Control w

 Make fast, efficient, and safe decisions

E.g., Frequency regulation with storage

51 Ug

(92,42) »  Frequencies and
angles should stay
within some bound

« Storage have
actuation constraints

(03, ws3)
- Safety: all constraints should be satisfied for a set of

disturbances

 Efficiency: minimize cost, low computation time
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Planning w

min g(x,y)
y

subject to:
Power balance constraints
Generation constraints

mxin c(x) +lo(x)

subject to:
Energy adequacy constraints
Technology constraints
Transmission constraints

« The problem size can get very large, especially if
storage and multiple scenarios are considered
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Computation Bottlenecks w

« Common problem structure:
wt—l—l — (.’Bt,’l}bt,dt)
state control  disturbance

Find a control sequence that minimize cost and satisfy
all state and control constraints

« Sometimes explicitly solving the problem is too
computationally expensive

* Use a neural network as a proxy

9 b |Neural ut
Network
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Key Issues and Design Goals

d;

_’é} :f(mtautvdt)

Lt

o

Neural
Network

Safe: x and u stay in their constraints
Computationally efficient
Performance: minimize some cost



Contributions w

For a class of systems (e.g., linear)

 We provide a way to design neural networks that are
always safe

« Easy to train, simple algebraic operations

« Based on geometry of convex sets and interior point
algorithms
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Model w

Lit+1 — ACBt -+ B’U,t -+ Edt

State:x € X
Control: w € U Convex X = {x: Az < b}

' polytopes
Disturbance: d € D | POYIOP

Static Feedback Policy: u: = mo ()
Safety: Forall t, u: €U and t+1 € &
Performance: mgincost(w,we(u))
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Safe Sets w

i1 = Axy + Bu, + Ed;
X t4+1 . X

Operational Constraints Invariant set
X={x:3u, Axr+ Bu+ Edec X Vvd, X € X}

 Invariant set can is computed offline
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Safe Actions

- Safe actionset: Uy = {ucld : x; 1 € X'}
* |t depends on the state

X,

Uy

xr
kt—I—l

- Main challenge: how to get 7(:) to be in these
shifting polytopes?
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Safe Actions w

 It's not hard to get the output of a neural network to
be in a fixed polytope

« The safe action set changes at every timestep

Current strategy: penalty or projection
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Penalty-Based Methods w

« High training cost for trajectories that violates the
constraints
« Hard to balance safety and exploration

* At best probabilistic guarantees
State Constraints
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Projection-Based Methods w

« Train a controller, if the control action falls outside,
project it back

’
’
4
’
’
7’
4
,/
’

* Needs to solve an optimization problem
« Can over-explore the boundary
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Restricting the Output w

* Not all sets are difficult: Axis-aligned rectangles are easy

‘tan
: — Points in a hypercube

Neural
Network

-
444444444

 Mapping a box to polytopes
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Safe Control Actions

Neural sV '
Network - | -

?

 We want a mapping between polytopes that is
— Bijective
— Easy to compute
— (sub) Differentiable

 We use the gauge map
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Mapping Between Polytopes w

« Given a polytope that contains the origin,
P={zeR": Fz<g}

« The gauge function
Yp(z) =min{\A > 0: z € AP}
AP,

P
vp(z) =min{A > 0: Fz < \g}

T
Cmin{A > 0: 4> 2LZ vy
\P g

Flz
= max
1 g;
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Gauge Map

» Bijection between the sets
* Closed-form formula
« Sub-differentiable in the parameters
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Convex Sets w

* A ray from the origin can only cross the boundary of a
convex set once

« This provides a unique way of identifying the the
points with respect to this set

i 0™

« For convex polytopes, the gauge function is easy to
compute
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Gauge Map

P={z:Fz<g} Q={z:Hz <k}
Find a > 0 such that ygo(az) = vp(2)

_yp(z) | max; F'z/g;
 yo(z) max; H 2 /k;

87

Only requires the half-space representation of polytopes
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Gauge Policy Networks w

Neural R |
P P ‘
Network »EZ / » .
1 u 5 gauge
- P hypercube map
« U, : half-space representation U; = {u : Hu < h(x;)}

« Control policy:
mo(x¢) = Gy o tanh o ()

[ N

feedforward neural network

gauge map
clamping function
« Sub-differentiable, easy to train

 But U; may not contain the origin
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Interior Points w

 If we know an interior point, we can always shift a set
to contain the origin g .
t — U

Neural : |
B |/ N )
Network :
E : 5 gauge
map

« u'™t some interior point

mo(xr) = Gy o tanh ogg(xs) + u'™

gauge map toyf, — "t
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Finding Interior Points w

 In planning, there are often trivial, high cost, but
feasible solutions
 In real-time control, there are often easy ways to find

feasible control actions
— There is a baseline feasible controller

— A few iterations suffices
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Frequency Control

« States: angle/frequency

« Control: battery output

« Cost: freq dev+bat deg

» There exist a linear safe controller:
u" = Kz,
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Policy Network

* Training: safely interact with
environment to choose 6
(policy gradient algorithms)

« Testing: 6 fixed
 Benchmark: penalty-based
approach action u; = mg(xy)

state evolution x4
reward 1y
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Safety During Training

—— Safe RL policy
Baseline RL policy
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Testing and Cost w

1,00 ommmmmmmm oo
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Explicit Model Predictive Control W

« MPC is a very popular control strategy
» Exploit known dynamics and cost

* (Constraint satisfaction and treat disturbances less
conservatively

* Solving online MPC can be computationally intensive

S.T. Li+1 — A.’Et + B’U,t
xr: € X, u UVt
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Explicit MPC W

 If the system is linear and the cost quadratic, then the
optimal action are piecewise affine functions

ui,...,upr = f(xp)

« The number of pieces scales exponentially
« Lots of work on using neural network to approximate
* Projection is used to provide hard guarantees
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Solution Concept w

» Use gauge neural network to choose a sequence
Ug, Uq, -.., Ur_1 iNside the feasible set F(x)

» Guarantees safety without oracles or projections
How do we get an interior pointin F(xg)?

Same approach as interior point algorithms used in
optimization.
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Interior Point Algorithms

e Suppose we want to solve
ma}n f(x)
s.t. gi(x) <0,i=1,...,m
« Path-following interior point algorithm solves a
sequence of problems

x, = argmin f(z —thlog —gi(x
— Barrler function

x, —x as pu—0

« But this path requires a strictly feasible point to get
started
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Phase 1 of Interior Point Algorithms

s.t. gi(x) <0,i=1,...,m

* Sometimes a feasible point is easy to find
 If not, a phase 1 problem is solved
Iglgl 5 T = is feasible
st. gi(x) <s,i=1,...,m S:mzani(O)
 This problem can be terminated once s < 0

* Finding a feasible point usually takes two or two
iterations
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Learning for MPC w

Phase 2

lterative
algorithm
Phase 1

{Find interior}
point
\ Phase 2
[Gauge-NN}
« Gauge-NN can lead to significant speedup if phase 2
IS more expensive than phase 1
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Simulation Setting w

 MPC with linear constraints and quadratic cost
function

* Training:
— Gauge neural network ug: R™ - R™
N
— Data:{xg}, _,
— Predict trajectories generated by ugy
— Training loss: average MPC cost over sample trajectories
» Testing:

— Close the loop: policy mg (x;) given by first action from ug(x;)
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Simulation Results

W
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Conclusion and Future Work w

« A way to find safe policies through mapping between
convex sets

« (Can learn nonlinear policies
« Performance and computation speedup

Future work

« Convex but non-polytopic sets

* Non-convex costs (e.g., robust optimization)
* Multi-agent systems
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