

Grid edge intelligence powered by GPU

Yingchen "YC" Zhang, VP of Product Solutions, Utilidata Inc. July 13th, 2022

ABOUT UTILIDATA

Open-source distributed AI to accelerate decarbonization

LOW

Voltage Sensitivity

One-way power flow meant that, by and large, voltages below the substation are always lower

Low voltage areas could be "fixed" by adding cap banks or voltage regulators

LOW

HIGH

THERE IS NO ABSOLUTE TECHNICAL LIMIT

90%

The cost and risk of operation go up with DER interconnection, but those risks and costs can be mitigated with real-time monitoring and controls

40%

?

TOMORROW

Before 2030, we will need a software-defined grid.

REAL-TIME AMI-BASED VOLTAGE

Our unique solution leverages AMI data to deliver real-time operational results from the substation to the meter.

- AI and machine learning establish electrical connectivity relationships
- Grid-edge data and apps build topology from substation to meter
- Enables flexible, accurate power flow predictions

Using meter data, customers save 33% more (3% → 4% EE) with real-time VVO

OUR SOLUTION: THE SMART GRID CHIP

Utilidata is partnering with NVIDIA to bring distributed AI to the grid edge

Industry leader in real-time, machine learning grid operations software and more experience developing grid-edge apps than any other company.

Global leader in accelerated computing, transforming industries with artificial intelligence, supercomputers, scientific simulation, and edge computing.

CURRENT GRID EDGE SOLUTIONS ARE INADEQUATE

Existing smart meters are not designed to support clean energy integration, resilience or modern operations.

Today's hardware-centric smart meters lack:

- Processing power
- Grid operational software
- A truly open architecture for open data and third-party innovation

SMART GRID CHIP PLATFORM

APPLICATIONS

GRID OPERATION SERVICES

SMART GRID CHIP PLATFORM

APPLICATIONS

SMART GRID CHIP PLATFORM

Power & Energy Society*

SMART GRID CHIP: TWO SOLUTIONS TO PROGRESS TOWARD AN AUTONOMOUS GRID

Connect + Manage

Operation of a **single node** during normal operations

CONNECT + MANAGE

A solution that makes each node on the grid autonomous, allowing utilities and customers to manage and optimize DERs in real time, by comparing information against forecasts.

This solution maximizes capacity utilization and removes the need for interconnection studies.

THE CHALLENGE

- Interconnection processes are time consuming and frustrating for customers and utilities.
- Utilities lack real-time visibility and two-way communication between DERs and the grid.
- Customers cannot predict where interconnection costs are going to spike.

COORDINATE + PROTECT

A solution that provides visibility to a network of nodes on the grid and is able to see anomalies, prevent outages before they happen, and recover when emergencies occur.

OUR MODEL WITH NEXT-GENERATION AMI

With next-generation AMI with on-meter computing, we can deliver full visibility to the edge of the grid.

VARIOUS METHODS FOR AMI METER FINGERPRINTING

For a given dependence matrix, 2 types of meter sorting were tested:

- Maximum Rand Index
- Spanning Tree

 » Best results obtained by intelligently combining results from both methods

idence : Normalized Dependence Score Matrix 0.6 Normalized Depend 0.9 10 20 0.8 0.45 30 40 05 07 60 70 80 90 10 20 60 70 80 90 30 40 50 Meter

Max Rand Index sorting

PRELIMINARY RESULTS

- Using the initial dataset and down-selected hyperparameters, an example mapping is shown overlaid on a street map.
- The results are 91% accurate, with true groups separated by color, and predicted groups enclosed by a polygon.

GPU in Edge Intelligence

Advanced hardware necessary for advanced processing

The GPU parallelizes operations:

- Enables fast response for time-critical operations, e.g., DER control
- Allows for many different processes to run simultaneously

