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Project Background and Objectives
Department of Energy’s Transmission Research Program

FOA 1861 – Big Data Analysis of Synchrophasor Data (Oct. 2019 – Mar. 2022)

Project Objectives
Derive value from the vast amounts of Phasor Measurement Unit (PMU) Data

Provide actionable information on the use of Machine Learning and Artificial Intelligence 
methods on large PMU datasets

Enable faster grid analytics and modeling

First-of-its-kind PMU dataset
Covers each of three U.S. interconnections (~450 PMU, 30 & 60 Hz reporting rate)

Covers 2 years including event logs (27 TB)

Is real data with inconsistencies, varying quality levels, and flaws (66% - 70% good data)

Is anonymized to protect the data providers (lack of location and topology information)
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Technical Accomplishments
PMU Data Quality Improvement

Online PMU Missing Value Replacement via Event-Participation Decomposition

Power System Event Detection
Graph Signal Processing-based Event Detection

Voltage Event Detection Using Optimization with Structured Sparsity-Inducing Norms
Power System Event Detection with Bidirectional Anomaly Generative Adversarial Networks

Power System Event Classification
Deep Neural Network-based Power System Event Classification
Classify System Events with a Small Number of Training Labels with Transfer Learning

Adversarial Attacks on Deep Neural Network-based Power System Event Classification Models

Power System Dynamic Parameter Estimation
Dynamic Parameter Estimation with Physics-based Neural Ordinary Differential Equations

Synthetic Power System Event Data Creation
pmuBAGE: The Benchmarking Assortment of Generated PMU Events

Power System Event Signature Library
A Dynamic Behavior-based Power System Event Signature Library 4



Voltage Event Detection Using Optimization with 
Structured Sparsity-Inducing Norms
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Background: Is PMU Data Matrix Low Rank?
Low-rank property of PMU data matrix holds up during normal operations

Largest singular value of Q data matrix accounts for 99.988% of the variance

The low-rank property of PMU data matrix is no longer valid during voltage events

The largest singular value of Q data matrix accounts for only 59.743% of the variance



Row-Sparse Structure of Residual PMU Data Matrix*
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Key Observations
Voltage related events trigged by 
system faults are often regional events

The 𝑋𝑋 − 𝐿𝐿 during voltage event periods 
have row-sparse structure

Rows of residual matrix correspond to 
PMUs highly impacted by the event

Main Idea
Decompose the streaming PMU data 
matrix 𝑋𝑋 into

A low-rank matrix 𝐿𝐿, a row-sparse event-
pattern matrix 𝑆𝑆, and a noise matrix 𝐺𝐺

Extract anomaly features from 𝐿𝐿 & 𝑆𝑆

Use clustering algorithm to identify 
power system voltage events

* X. Kong, B, Foggo, and N. Yu, “Online Voltage Event Detection Using Optimization with Structured Sparsity-Inducing 
Norms,“ IEEE Transactions on Power Systems, 2022. DOI: 10.1109/TPWRS.2021.3134945.



Overview of Voltage Event Detection Framework
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Step 1: Decompose streaming PMU data matrix 
𝑋𝑋 = 𝐿𝐿 + 𝑆𝑆 + 𝐺𝐺
 Proposed Algorithm: Proximal Bilateral Random 

Projections (PBRP)

Step 2: Extract anomaly features
 𝑙𝑙21 norm of the row sparse matrix 𝑆𝑆
 Max temporal difference of low-rank matrix 𝐿𝐿

Step 3: Distinguish normal system operation data 
from that of the system voltage events
 Adopt density-based cluster analysis DBSCAN
 Outliers correspond to voltage events



Decompose Matrix with Row-Sparse Structure with 
Proximal Bilateral Random Projection (PBRP)
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⇒

Solution Approach: Coordinate Descent

Update 𝐿𝐿: Closed-form Bilateral 
Random Projection (BRP) 
enhanced by Power Scheme

Update 𝑆𝑆 with proximal method



Numerical Results and Summary
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Residual PMU data matrices during voltage 
events have distinctive sparsity structure

Computationally efficient PBRP algorithm is 
proposed to decompose PMU data matrices

The proposed online voltage event detection 
algorithm shows better accuracy and scalability 



Power System Event Detection via Bidirectional 
Anomaly Generative Adversarial Networks
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Motivation
Detecting power system events with supervised machine learning algorithms requires a 
large amount of high quality training labels (confirmed events)

Event detection accuracy drops quickly as the number of training label reduces.

Develop a Bidirectional Anomaly Generative Adversarial Network (Bi-AnoGAN)-based event 
detection algorithm, which does not depend on a large amount of high quality event labels.

Main Idea
Learn two mapping functions that project PMU data samples during normal operating 
conditions to the noise space and then back to the PMU data space.

A large reconstruction error and discriminator loss → it is very likely that the new PMU 
sample corresponds to a system event.

Improve computation efficiency with the design of Bidirectional GAN (BiGAN) by training an 
additional encoder network that can directly map a PMU data sample to the noise space.



Overview of System Event Detection Framework
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Step 1: Pre-process historical and online 
streaming PMU data

Step 2: Offline training. Train an encoder 𝐸𝐸, 
generator 𝐺𝐺, and discriminators 𝐷𝐷 using PMU 
data during normal operating conditions.

Step 3: Online event detection.
(1) Calculate the difference between original streaming 

PMU data and the reconstructed PMU data
(2) Calculate discriminator loss (Does incoming PMU 

sample come from normal operation periods?)
(3) Calculate anomaly score and compare it against a 

dynamic threshold



Offline Training of Bi-AnoGAN
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Training of Bi-GAN is formulated as a min-max problem
min
𝑮𝑮,𝑬𝑬

max
𝑫𝑫

𝑉𝑉(𝑫𝑫,𝑬𝑬,𝑮𝑮) = 𝔼𝔼𝒙𝒙~𝑝𝑝(𝒙𝒙) 𝑙𝑙𝑙𝑙𝑙𝑙𝑫𝑫(𝒙𝒙,𝑬𝑬(𝒙𝒙)) + 𝔼𝔼𝒛𝒛~𝑝𝑝(𝒛𝒛) log(1 − 𝑫𝑫 𝑮𝑮 𝒛𝒛 , 𝒛𝒛 )

Encoder, 𝐸𝐸 improves computational efficiency by directly mapping PMU data samples to the noise space

Training of BiGAN with Wasserstein loss
min
𝑮𝑮,𝑬𝑬

max
𝑫𝑫∈𝒟𝒟

𝑉𝑉𝒙𝒙𝒛𝒛(𝑫𝑫𝒙𝒙𝒛𝒛,𝑬𝑬,𝑮𝑮) = 𝔼𝔼𝒙𝒙~𝑝𝑝(𝒙𝒙) 𝑫𝑫𝒙𝒙𝒛𝒛(𝒙𝒙,𝑬𝑬(𝒙𝒙)) − 𝔼𝔼𝒛𝒛~𝑝𝑝(𝒛𝒛) 𝑫𝑫𝒙𝒙𝒛𝒛 𝑮𝑮 𝒛𝒛 , 𝒛𝒛

The 1-Lipschitz constraint on the discriminator function mitigates mode collapse problem and improves 
convergence of the training process

Encourage cycle consistency by adding conditional entropy constraints

Add 𝑉𝑉𝑥𝑥 𝑫𝑫𝑥𝑥,𝑬𝑬,𝑮𝑮 = 𝔼𝔼𝒙𝒙~𝑝𝑝(𝒙𝒙) 𝑫𝑫𝒙𝒙(𝒙𝒙) − 𝔼𝔼𝒙𝒙~𝑝𝑝(𝒙𝒙) 𝑫𝑫𝒙𝒙 𝑮𝑮 𝑬𝑬 𝒙𝒙 to enforce 𝒙𝒙 = 𝑮𝑮(𝑬𝑬 𝒙𝒙 )

Add 𝑉𝑉𝑧𝑧 𝑫𝑫𝑧𝑧,𝑬𝑬,𝑮𝑮 = 𝔼𝔼𝒛𝒛~𝑝𝑝(𝒛𝒛) 𝑫𝑫𝒛𝒛(𝒛𝒛) − 𝔼𝔼𝑧𝑧~𝑝𝑝(𝒛𝒛) 𝑫𝑫𝒛𝒛 𝑬𝑬 𝑮𝑮 𝒛𝒛 to enforce 𝒛𝒛 = 𝑮𝑮(𝑬𝑬 𝒛𝒛 )

Final objective function
min
𝑮𝑮,𝑬𝑬

max
𝑫𝑫𝒙𝒙𝒛𝒛,𝑫𝑫𝒙𝒙,𝑫𝑫𝒛𝒛

[𝑉𝑉𝒙𝒙𝒛𝒛 𝑫𝑫𝒙𝒙𝒛𝒛,𝑬𝑬,𝑮𝑮 + 𝑉𝑉𝑥𝑥 𝑫𝑫𝑥𝑥,𝑬𝑬,𝑮𝑮 + 𝑉𝑉𝑧𝑧 𝑫𝑫𝑧𝑧,𝑬𝑬,𝑮𝑮 ]



Online Event Detection
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Anomaly Score Calculation 𝑳𝑳 = 𝜆𝜆𝑳𝑳𝐺𝐺 + (1 − 𝜆𝜆)𝑳𝑳𝐷𝐷
PMU data reconstruction error 𝑳𝑳𝐺𝐺 = 𝒙𝒙 − 𝑮𝑮(𝑬𝑬(𝒙𝒙)) 2

The discriminator loss 𝑳𝑳𝐷𝐷 = 𝐵𝐵𝐵𝐵𝐸𝐸(𝑫𝑫𝒙𝒙𝒛𝒛(𝒙𝒙,𝑬𝑬(𝒙𝒙))). 𝐵𝐵𝐵𝐵𝐸𝐸: binary cross-entropy loss function.

Dynamic Threshold for Anomaly Score
Threshold = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝑡𝑡−60:𝑡𝑡−1 + 𝑐𝑐 × 𝑠𝑠𝑠𝑠𝑠𝑠(𝐿𝐿𝑡𝑡−60:𝑡𝑡−1)

𝑐𝑐 is a hyper-parameter



Numerical Study Setup and Illustration
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PMU Dataset
187 PMUs from Eastern Interconnection

May 2016 – December 2017

807 voltage events, 82 frequency events

Training Dataset for Bi-AnoGAN
First operation day’s PMU data in a half year

Size of training sample
A window size of 1 second

3D tensor: 30 time stamps, 179 PMUs, 4 
channels

Number of training samples in a day 86400

Training Setup
Learning rate: 1e-4

Batch size 256

8 hrs of training time on NVIDIA GeForce RTX 
2080 Ti GPU voltage event frequency event



Results and Summary
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<2 ms for processing each snapshot of PMU data sample

Pros of Bi-AnoGAN: Computationally efficiency, do not need labels, high detection accuracy.

Cons of Bi-AnoGAN: Network architecture needs to be appropriately designed to avoid non-
convergence and instability.



System Event Identification: Overall Framework
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Formulated as a classification problem
Normal operation condition, line event, generator event, oscillation event

Three key modules
CNN-based Classifier, GSP-based PMU Sorting, Info. Loading-based Regularization

Input: 3 dimensional tensor
Time, PMU ID, and PQ|V|f measurement

Overall Framework



Graph Signal Processing-based PMU Sorting
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Motivation
Make parameter sharing scheme of Convolutional Neural Classifier more effective

Main Idea
Strategically place highly correlated PMUs close to each other

Solution
Systematically rearrange PMUs in the input tenors with GSP-based PMU sorting algo.

Visualization of Spatial Correlation 
Matrix of PMU Measurementsmin
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Information Loading-based Regularization
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Background
Abstract Representation of Deep Neural Network based Classifier

Low entropy input 
feature space

High entropy input 
feature space

Main Idea
Control the amount of information compression between the input layer and the last 
hidden layer of a deep neural network
Balance memorization and generalization

Algorithm
Augment the typical cross-entropy loss function with estimated mutual information 
between the input layer and the hidden representation



Overall Neural Network Architecture*
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Neural Classifier, Mutual Information Estimator, Loss Function Augmentation

* J. Shi, B. Foggo, and N. Yu, "Power System Event Identification based on Deep Neural Network with Information Loading," 
IEEE Transactions on Power Systems, vol. 36, no. 6, pp. 5622-5632, Nov. 2021.



Numerical Study Results
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Dataset Description
2 years of PMU data from Eastern Interconnection
1247 labeled Events, 187 PMUs (Training, Validation, Testing)

Illustration of Sub-tensor Sampling

Data Augmentation

Performance on Validation Data



Testing Results and Learned Representation

21

F1 Scores on Testing Dataset

Comparison of representations of different ML methods after linear dimension reduction

Learned Representation



Summary and Extensions
Summary

Off-the-shelf ML algorithms often do not work well

Physical-domain knowledge + deep learning is needed

Information loading helpful in balancing memorization and generalization

Without Transfer Learning

With Transfer Learning

Example of a small perturbation computed by DeepFool that make the model misclassify 
from normal operation behavior to generator event
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Extensions
Transfer Learning: PMU and event log data from one electric grid provide useful info. in 
analyzing the behavior of another electric network

Adversarial attacks and defense: easy to add tailored noise signal to fool event classifier



Synthetic Power System Event Data Creation
Why do we need synthetic PMU dataset?

Researchers/developers of machine learning algorithms for transmission system always 
identify the lack of large-scale and realistic PMU data set as a bottleneck for innovation

Security concerns, common problem for both academia and industry

Benchmarking across algorithms is hard when they’re all tested on different data

Is PMU data generated from dynamic simulation sufficient?
Advantages

PMU data generated is consistent with simulated dynamic system

Simulation model can be configured to answer any hypothetical research questions

Disadvantages

IEEE dynamic test cases can not match the complexity of real-world transmission systems

Parameterization of generic models (e.g. renewables) are extremely difficult to match observed dataset

Lack realistic details (PMU data in response to real-world events often can not be easily emulated by 
dynamic models, noise, missing values, outliers)

23



pmuBAGE: The Benchmarking Assortment of 
Generated PMU Events*

pmuBAGE: the result of training a generative model on ~1,000 real-world power 
system events in the Eastern Interconnection.

Publicly available at https://github.com/NanpengYu/pmuBAGE

Advantages: accessibility, homogeneity of results & unprecedented level of realism

Contains 84 synthetic frequency events and 620 synthetic voltage events

4 channels (PQ|V|F), 20 seconds event window length, 100 PMUs

Key Ideas
Decompose PMU data during an event into: Event Signatures and Participation Factors

Event signatures can be separated into two types: inter-event and intra-event

Physical event signatures are PMU private and are used directly

Statistical participation factors are synthesized with generative model

* B. Foggo, K. Yamashita, N. Yu, “pmuBAGE: The Benchmarking Assortment of Generate PMU Events – Part I and II”
https://arxiv.org/abs/2204.01095 24

https://github.com/NanpengYu/pmuBAGE


pmuBAGE – Frequency Events

pmuBAGE frequency event An actual frequency event

25The interval between two time indices is 1 / 30 seconds.
The presented data is scaled to per unit values.



pmuBAGE – Sample Voltage Event

An actual voltage event pmuBAGE voltage event
26The interval between two time indices is 1 / 30 seconds.

The presented data is scaled to per unit values.



The Event-Participation Decomposition*
Decomposes PMU data in an event window into

A dynamic component shared by all PMUs – the Event Signature
A static component which varies by PMU – the Participation Factor
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Properties of Physical Event Signatures
Depend on all PMUs, but don’t depend much on any single PMU.
Event signatures are PMU private and can be used directly to generate synthetic PMU data.

Properties of Statistical Participation Factor
Participation factors are not PMU private by definition.
They must be synthesized

* B. Foggo and N. Yu, "Online PMU Missing Value Replacement via Event-Participation Decomposition," 
IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 488-496, Jan. 2022.



Overall Framework: Generating synthetic PMU data
Decompose event signatures into 2 types

Inter-Event Signature
Appear repeatedly across events with little variation
The corresponding participation factors are statistically simple
Inter-Event participation factors ~ Multivariate Gaussian after 
simple transformation

Intra-Event Signature
Unique components of an event
The corresponding participation factors are more complicated
Generated via a deep generative probabilistic program
Key architectural components

Feature extraction maps with cascaded convolutional network
Loss function with feature mapping and quantile loss



Correlation Analysis and Inception-Like Scoring

Quality of generated PMU data samples measured by “Inception-like score”
Train a standard ResNext model to classify event types of labels “frequency” and “voltage”
200 epochs of training with a batch size of 50 with Binary Cross Entropy loss function
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Max correlation between synthetic and 
real events is 0.25
No historical events used to train the 
model are compromised
Max correlation between synthetic and 
real PMU measurements is 0.205.
No PMUs used to train the model are 
compromised

Training-Testing Accuracy F1 F2

Synthetic-Synthetic 99.9% 94.3% 93.3%

Synthetic-Measured 94.3% 94.2% 92.8%

Measured-Measured 99.8% 94.4% 91.2%

Measured-Synthetic 93.2% 94.3% 92.7%

No significant degradation in F1 or F2 
scores in cross-comparison compared 
to self comparisons.
pmuBAGE may serve the community 
as a standard benchmarking tool for 
event detection and classification.



Lessons Learned and Next Steps
Lessons Learned

Off-the-shelf machine learning models are often not sufficient

Physics-based machine learning is the key to developing breakthrough technology in 
power system data analytics.

The availability of real-world (synthetic) power system data is critical to the accelerated 
development and benchmarking of data-driven algorithms.

Next Steps
Pilot demonstrations with partner institutions (EPRI and EPG)

Deeper integration of physical power system model with machine learning algorithms

Interpretable machine learning models for PMU data analytics

Making artificial intelligence algorithms actionable in bulk power system

Safety and robustness of ML in critical infrastructure systems (bulk power system)

Closer collaboration between artificial and operator intelligence
30
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1. pmuBAGE: The Benchmarking Assortment of Generate PMU Events – Part I and II
2. A dynamic Behavior-based Bulk Power System Event Signature Library with Empirical Clustering
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