Toward Future Electricity Markets with Massive DER Penetration and Optimal Transmission-Distribution Coordination

Meng Wu Arizona State University July 13, 2022

Acknowledgements

ASU Graduate Students:

Mohammad Mousavi Retail Market Design + T&D Coordination

Zhongxia Zhang Machine Learning + Price Forecasting

Challenges & Opportunities

• Forecast Electricity price?

• Coordinate T&D, DER aggregators, and DERs?

Today's market for DER integration:

- Solves the market clearing problem with <u>transmission level</u> operating constraints, generator & DER bids
- Many (aggregated) DERs entering the ISO market
- Market clearing computation burden and convergence
- ISO not observing distribution grids
- Mismatch between market/physical models
- Voltage/thermal violations in distribution grids

The ideal (unrealistic) market for DER integration:

• Solve the market clearing problem with <u>transmission and</u> <u>distribution level</u> operating constraints, generator & DER bids

Optimal Decisions: Generator/DER dispatch outputs p (MW), locational marginal prices (MWh)

Existing works for T&D market coordination:

- ISO and DSOs to operate T&D markets separately
- Bi-level modeling, feasible region projection, multi-port power exchange
 - ✓ Exchanging T&D grid models/data → data confidentiality/privacy, increased ISO modeling/computation efforts
- Decentralized/Distributed optimization
 - Decompose the ideal (unrealistic) optimization model/computation across the ISO and DSOs
 - Coupled T&D iterative optimization solution process, exchanging T&D intermediate values during iterations
 - ✓ Need to change existing ISO market clearing computations
 - ✓ High communication demands between T&D

Proposed T&D market coordination:

- ISO and DSOs to operate T&D markets separately
- Decompose the ideal (unrealistic) optimization model/computation across the ISO and DSOs
 - ✓ No T&D grid models/data exchange
 - ✓ No change to existing ISO market clearing procedure
 - ✓ Completely decoupled T&D solution iterations → no iterative T&D communications
 - ✓ Only exchange the minimal amount of public data → minimized communication burden between T&D
 - ✓ Decomposed T&D market clearing outcomes are identical to the ideal integrated market clearing outcomes.

Proposed T&D market coordination:

• ISO requests the incremental cost curves from all generators and DSOs

Proposed T&D market coordination (before ISO market clearing):

Proposed T&D market coordination (after ISO market clearing):

- 1. ISO clears the wholesale market and sends out each DSO's wholesale dispatch signal $p_i^{DSO^*}$ (MW), wholesale locational marginal price (LMP) $\pi_i^{DSO^*}$ (\$/MWh) \rightarrow total wholesale payment to DSO = $p_i^{DSO^*} \times \lambda_i^{DSO^*}$ (\$)
- 2. DSO re-dispatch the wholesale dispatch signal $p_i^{DSO^*}$ and wholesale payment $p_j^{DSO^*} \times \lambda_j^{DSO^*}$ to obtain the retail dispatch signal $p_j^{DER^*}$ and retail LMP $\lambda_j^{DER^*}$ for each DER

Proposed T&D market coordination:

- ISO and DSOs to operate T&D markets separately
 - \checkmark Only exchange the minimal amount of public data:
 - DSO to ISO: DSO's incremental cost curve
 - ISO to DSO: DSO's wholesale dispatch and LMP
 - $\checkmark\,$ No change to existing ISO market clearing procedure
 - ✓ No iterative T&D communications
 - ✓ Decomposed T&D market clearing outcomes are identical to the ideal integrated market clearing outcomes.
 - DER dispatch and payment are identical in both markets
 - DSO will not lose money (DSO wholesale payment from ISO ≥ DSO total retail payment to DERs)

Case studies – test case description:

- **ISO**: 3 generating units, 3 demand response units, 5MW firm load
- DSO: 10 nodes, 9 lines, 4 dispatchable distributed generation aggregators (DDGAG), 1 renewable energy aggregators (REAG), 1 demand response aggregator (DRAG)

TABLE I

WHOLESALE I	MARKET	PARTICIPANTS	INFORMATION

Participant	Pmin (MW)	Pmax (MW)	Offering price (\$/MWh)
Gen 1	0	10	8
Gen 2	0	20	20
Gen 3	0	30	22
DR 1	0	10	30
DR 2	0	20	32
DR 3	0	20	34

TABLE II DSO MARKET PARTICIPANTS INFORMATION				
Participant	Pmin (MW)	Pmax (MW)	Offering price (\$/MWh)	
DDGAG 1	0	0.5	20	
DDGAG 2	0	1	10	
DDGAG 3	0	1.2	15	
DDGAG 4	0	2	24	
DRAG	0	20	28	
REAG	0	1	0	

Case studies – DSO cost curves:

• **DSO**: parametric programming with linearized real/reactive power flow, voltage constraints, line flow constraints

$$c^{dso}(P^{dso}) = Min \sum_{g \in G} \sum_{b \in B} P_{g,b}\pi_{g,b} - \sum_{d \in D} \sum_{b \in B} P_{d,b}\pi_{d,b} \quad (6)$$
s.t.

$$\sum_{\substack{d \in D}} \sum_{b \in B} H_{n,d}P_{d,b} + H_n^{sub} P^{dso} + L_n^P \quad (7)$$

$$-\sum_{g \in G} \sum_{b \in B} H_{n,g}P_{g,b} + \sum_{j \in J} Pl_jA_{j,n} = 0; \quad \forall n \in N \quad (7)$$

$$\sum_{\substack{d \in D}} \sum_{b \in B} H_{n,g}P_{d,b}tan\phi_d + H_n^{sub}Q^{dso} + L_n^Q \quad (8)$$

$$-\sum_{g \in G} \sum_{b \in B} H_{n,g}P_{g,b}tan\phi_g + \sum_{j \in J} Ql_jA_{j,n} = 0; \forall n \in N \quad (8)$$

$$0 \leq P_{g,b} \leq P_{b,g}^{max}; \quad \forall b \in B, \forall g \in G \quad (9)$$

$$0 \leq P_{d,b} \leq P_{d,g}^{max}; \quad \forall b \in B, \forall d \in D \quad (10)$$

$$U_m = U_n - 2(r_jPl_j + x_jQl_j); \quad \forall m \in N, \quad (11)$$

$$\frac{U}{\forall n \in N, C(m, n) = 1, A(j, n) = 1 \quad (12)$$

$$-Pl^{max} \leq Pl_j \leq Pl^{max}; \quad \forall j \in J \quad (13)$$

$$-Ql^{max} \leq Ql_j \leq Ql^{max}; \quad \forall j \in J \quad (14)$$

DSO total (minimal) generation cost 100 (5.7, 86)-50 (3.2, 16)Cost (\$) (1, 2, -32)(0.7, -42)(-0.5, -60) (-1.5, -70) -50 -100 ______ -2 -1 5 0 2 3 Output power (MW) DSO incremental cost (price-quantity pairs) Marginal cost (\$/MWh) 20 12 12 22 26 27 -1 0 2 3 5 4 **Output power (MW)**

Challenges & Opportunities

Coordinate T&D, DER aggregators, and DERs?

• Forecast Electricity price?

Motivation: Market Timeline

Market Timeline

18

Describe Electricity Market at T from Market Participants' Perspective

- Electricity market at t can be described by the tuple (D^{RT}_T, D^{DA}_T, LMP^{RT}_T, LMP^{DA}_T).
- For RT market, the RT OPF process can be represented by the transition dynamics: $P(LMP^{RT}_{T} | D^{RT}_{T}, B^{RT}_{T})$.
- The generators' bidding strategy B^{RT}_T is a decision made based on previous states and current states: P(B^{RT}_T | D^{RT}_{1~T}, D^{DA}_{1~T}, LMP^{RT}_{1~T-1}, LMP^{DA}_{1~T}).
- Without knowledge of bidding data, the learning goal is to learn the RT OPF process denoted by: P(LMP^{RT}_T| D^{RT}_{1~T}, D^{DA}_{1~T}, LMP^{RT}_{1~T-1}, LMP^{DA}_{1~T}).
- Because D^{RT}_{1~T}, D^{DA}_{1~T}, LMP^{RT}_{1~T-1}, LMP^{DA}_{1~T} are time series, the same data at different timesteps contribute differently, their positions in this time sequence should be utilited as conditional information.
- The generators' bidding strategy B^{RT}_{T} is also conditioned on fuel prices, which should also be utilized.

 $\tau = (D_1^{DA}, D_1^{RT}, LMP_1^{DA}, LMP_1^{RT}, D_2^{DA}, D_2^{RT}, LMP_2^{DA}, LMP_2^{RT}, \dots, D_T^{DA}, D_T^{RT}, LMP_T^{DA}, LMP_T^{RT})$ Trajectory representation

The Structure of Decision Transformer Predictor

 $\tau = (D_1^{DA}, D_1^{RT}, LMP_1^{DA}, LMP_1^{RT}, D_2^{DA}, D_2^{RT}, LMP_2^{DA}, LMP_2^{RT}, \dots, D_{K+1}^{DA}, D_{K+1}^{RT}, LMP_{K+1}^{DA})$

Case studies – Southwest Power Pool:

- Training Data: Hourly zonal RTLMPs, DALMPs, RT demand, DA demand, and natural gas prices from 6/1/2016 to 7/30/2017 in SPP. Additional historical generation mix data is incorporated.
- Testing Data: Predicting hourly SPP RTLMPs for Shub and Nhub price zone in the following periods: 7/31/2017-8/13/2017, 8/21/2017-9/3/2017, 9/18/2017-10/1/2017, and 10/2/2017-10/15/2017.

The decision transformer model is tested to predict hourly RTLMPs: (A): in the hour-ahead manner (B): in the day-ahead manner

Case studies – Southwest Power Pool:

- Training Data: Hourly zonal RTLMPs, DALMPs, RT demand, DA demand, and natural gas prices from 6/1/2016 to 7/30/2017 in SPP. Additional historical generation mix data is incorporated.
- Testing Data: Predicting hourly SPP RTLMPs for Shub and Nhub price zone in the following periods: 7/31/2017-8/13/2017, 8/21/2017-9/3/2017, 9/18/2017-10/1/2017, and 10/2/2017-10/15/2017.

RTLMP Prediction Accuracy in Case 1 (B)		
Approach	MAPE (%) for SHub Price Zone	
NN	59.2	
MARS	51.8	
ARMA	37.4	
SVM	40.9	
LASSO	33.5	
ALG+ \hat{M}^1	25.4	
Genscape ²	21.7	
GAN	22.1	
Case 2 (A)	21.0	
Case 2 (A) without	21.9	
natural gas price		

¹ The proposed method with the best performance in [1]

² State-of-the-art baseline prediction from Genscape [1]

The decision transformer model is tested to predict hourly RTLMPs: (A): in the hour-ahead manner (B): in the day-ahead manner

Case studies – ISO New England:

- Training Data: Hourly zonal RTLMPs, DALMPs, RT demands, and DA demands and historical natural gas prices from January 2019 to September 2019 in ISO-NE.
- **Testing Data:** Predicting hourly ISO-NE RTLMPs hour by hour from October 2019 to December 2019.

RTLMP Forecasting Accuracy in Cases 2			
Approach	MAPE (%)	MAPE (%)	MAPE (%)
	in Case 2(A)	in Case 2(B)	in Case 2(C)
NN	37.2	34.8	33.1
ARMA	30.7	25.1	26.3
SVM	27.7	25.2	25.6
CLSTM-GAN	15.4	12.09	13.1
DT	12.9	10.8	10.5

The decision transformer model is tested to predict next hour RTLMPs:

- (A): using past 12-hour historical data
- (B): using past 24-hour historical data
- (C): using past 48-hour historical data

Future Directions

T&D coordination for DER market integration

- Extend the proposed approach to energy + reserve markets
- Consider resources with inter-temporal constraints (such as batteries)
- Consider binary decisions (such as unit commitment)
- Coordinate distribution-level services with transmission-level services
- Computationally efficiently algorithms for the parametric-programming-based retail market

Machine learning for market analysis/prediction

- Analyze market participant behavior
- Pricing design

Toward Future Electricity Markets with Massive DER Penetration and Optimal Transmission-Distribution Coordination

Meng Wu Arizona State University (mwu@asu.edu)