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Ubiquity of Distributed 
Energy Resources

• Increased volatility and 
uncertainty

• Optimal Power Flow (OPF) 
problem needs to be solved 
more often

• Curse of dimensionality due to 
increasing DER penetration

• Need for fast solvers



Overall Idea

System 
load

Powers, 
Angles

Key Challenges

Training the neural network to handle constraints

What if there is a need to re-train?



Outline

Learning-based constrained optimization method

Capable of adjusting weights quickly with changes in the underlying structure 

Anytime satisfaction of constraints

Simulation results on realistic power system models



Learning-Based Constrained Optimization Problem 
Solver

Verify Ensure feasibility with respect to the inequality constraints

Complete Compute the dependent variables from equality constraints

Train Train NN to predict only independent variables with soft penalty

Partition Partition the decision variables into dependent and independent 

Reduces the dimension of the NN

Post-processing if needed

Automatically satisfies the equality constraints

[1] X .Pan, T. Zhao, M. Chen and S. Zhang, "DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow," in IEEE Transactions on Power Systems



DC-OPF using Neural Networks

• NN is trained to output the generator powers
• Output layer consists of the sigmoidal function to handle capacity constraints
• Loss function consists of error and soft loss pertaining to the line flows
• Line angles are computed using the power flow equation
• If needed, post-processing is performed

min
𝑃𝑃𝑔𝑔,𝜃𝜃

�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖(𝑃𝑃𝑔𝑔𝑔𝑔)

s. t. 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔
B𝜃𝜃 = 𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑙𝑙
𝑏𝑏𝑖𝑖𝑖𝑖(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗) ≤ 𝑃𝑃𝑖𝑖𝑖𝑖 ∀(𝑖𝑖, 𝑗𝑗)

Generation Cost

Capacity Constraints

Power Balance

Flow limits

[1] X .Pan, T. Zhao, M. Chen and S. Zhang, "DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow," in IEEE Transactions on Power Systems



Accelerated Training

• The underlying structure of the network might change often
• Model needs to be re-trained
• To ensure faster training, there is a need to go beyond vanilla 

gradient-descent
• The size of NN prohibits the use of Newton-like methods as computing 

the inverse of the Hessian is expensive
• Momentum-based methods which rely on only the gradient information 

need to be explored



Linear Regression Models



Linear Regression Models



Linear Regression Models

GD𝑛𝑛

First-order Tuners



Accelerated Performance with a High-order Tuner



Accelerated Performance with a High-order Tuner



Accelerated Performance with a High-order Tuner



Accelerated Performance (discrete-time)

[1]  J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.
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Accelerated Performance (discrete-time)

𝛻𝛻𝐿𝐿𝑘𝑘𝜙𝜙𝑘𝑘

Current Nnet algorithms:
𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝛾𝛾𝑘𝑘𝛻𝛻𝜃𝜃𝐿𝐿 𝜃𝜃𝑘𝑘

Proposed Discrete HT Proposed Continuous HT

[1]  J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.



Non-Asymptotic Tools
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Non-asymptotic Properties: Example 1

(quadratic, non-homogeneous, convex)

Modified Smooth-Hard Problem, with time-varying regressors

[1]  J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.



Image Deblurring: Example 2

Blurring can be caused by many factors:

• Movement during the image capture process, by the camera or, when long 
exposure times are used, by the subject

• Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a short 
exposure time, which reduces the number of photons captured

• Scattered light distortion in confocal microscopy

• Model for blur[1]:
𝑦𝑦 = 𝜙𝜙𝑇𝑇𝜃𝜃∗ + 𝑛𝑛

[1] https://www.mathworks.com/help/images/image-deblurring.html

https://www.mathworks.com/help/images/image-deblurring.html


Non-asymptotic Properties: Example 2

[1]  J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.



De-Blurring an Image with a Time-Varying Blur

[1] Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183-202.
[2] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.

ISTA: Iterative Shrinkage-Thresholding Algorithm FISTA: Fast Iterative Shrinkage-Thresholding Algorithm






High-Order Tuner with General Convex Function

If in addition 𝑓𝑓 is also 𝜇𝜇-strongly convex

Algorithm HT for general convex function[1]

1: Input: initial conditions 𝜃𝜃0,𝜗𝜗0, gains 𝛾𝛾,𝛽𝛽, 𝜇𝜇
2: for 𝑘𝑘 = 0,1,2, … do
3:     Receive regressor 𝜙𝜙𝑘𝑘
4:     Compute 𝛻𝛻𝐿𝐿(𝜃𝜃𝑘𝑘) and let 𝒩𝒩𝑘𝑘 = 1 + 𝐻𝐻𝑘𝑘,

𝛻𝛻𝑓𝑓𝑘𝑘 𝜃𝜃𝑘𝑘 = 𝛻𝛻𝐿𝐿𝑘𝑘(𝜃𝜃𝑘𝑘)
𝒩𝒩𝑘𝑘

,
𝜃̅𝜃𝑘𝑘 = 𝜃𝜃𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛻𝛻𝑓𝑓𝑘𝑘(𝜃𝜃𝑘𝑘)

5:     𝜃𝜃𝑘𝑘+1 ← 𝜃̅𝜃𝑘𝑘 − 𝛽𝛽(𝜃̅𝜃𝑘𝑘 − 𝜗𝜗𝑘𝑘)
6:     Compute 𝛻𝛻𝐿𝐿(𝜃𝜃𝑘𝑘+1) and let

𝛻𝛻𝑓𝑓𝑘𝑘 𝜃𝜃𝑘𝑘+1 = 𝛻𝛻𝐿𝐿𝑘𝑘(𝜃𝜃𝑘𝑘+1)
𝒩𝒩𝑘𝑘

7:     𝜗𝜗𝑘𝑘+1 ← 𝜗𝜗𝑘𝑘 − 𝛾𝛾 𝛻𝛻𝑓𝑓𝑘𝑘(𝜃𝜃𝑘𝑘+1)
𝒩𝒩𝑘𝑘

8: end for

Theorem   Parameter convergence of HT with Hessian[1]

For a 𝜇𝜇-strongly convex loss function 𝐿𝐿𝑘𝑘(⋅), Algorithm 2 

with 0 < 𝛽𝛽 < 1 and 0 < 𝛾𝛾 ≤ 𝛽𝛽(2−𝛽𝛽)
16+𝛽𝛽+𝜇𝜇

ensures that 𝑉𝑉 is a 

Lyapunov function. Furthermore, for constant regressors,

𝑉𝑉𝑘𝑘 ≤ exp −𝜇𝜇𝜇𝜇𝜇𝜇 𝑉𝑉0, where 𝐶𝐶 = 𝛾𝛾𝛾𝛾
4𝒩𝒩

.

[1] Moreu, José M., and Anuradha M. Annaswamy. "A Stable High-order Tuner for General Convex Functions." IEEE L-CSS, 2021.

Lyapunov function: 𝑉𝑉 = 1
𝛾𝛾
𝜗𝜗 − 𝜃𝜃∗ 2 + 1

𝛾𝛾
𝜃𝜃 − 𝜗𝜗 2

Stability: Δ𝑉𝑉𝑘𝑘 ≤ 0



High-order Tuner for Convex and Dynamic Loss Functions

Step change in 𝑏𝑏𝑘𝑘 from 7 to 14 at 𝑘𝑘 = 25 Step change in 𝑏𝑏𝑘𝑘 from 7 to 14 at 𝑘𝑘 = 1500 No change in 𝑏𝑏𝑘𝑘

Accelerated 
performance

Stable performance
with dynamics

𝐿𝐿𝑘𝑘(𝜃𝜃∗)

[1] Moreu, José M., and Anuradha M. Annaswamy. "A Stable High-order Tuner for General Convex Functions." IEEE L-CSS, 2021.
[2] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.
[3] Gaudio, Joseph E., et al. "A Class of High Order Tuners for Adaptive Systems." IEEE L-CSS, 2020.

Loss: 𝐿𝐿𝑘𝑘 𝜃𝜃 = log(𝑎𝑎𝑘𝑘𝑒𝑒𝑏𝑏𝑘𝑘𝜃𝜃 + 𝑎𝑎𝑘𝑘𝑒𝑒−𝑏𝑏𝑘𝑘𝜃𝜃) Loss: 𝐿𝐿𝑘𝑘 𝜃𝜃 = log(𝑎𝑎𝑘𝑘𝑒𝑒𝑏𝑏𝑘𝑘𝜃𝜃 + 𝑎𝑎𝑘𝑘𝑒𝑒−𝑏𝑏𝑘𝑘𝜃𝜃) + 𝜇𝜇
2
𝜃𝜃 − 𝜃𝜃0 2



Summary So Far
• Solving OPF problems via learning the mapping between loads and 

optimal generator set points
• A new algorithm utilizing HT with nice learning properties

• Theoretical guarantees only for convex loss functions!! Could we say 
anything for general NN?

[1]  J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.



Case Studies on IEEE 30 and 300-Bus Systems

IEEE Case N-load N-hidden N-neuron N-gen N-variables

30-Bus 20 2 16 6 36
300-Bus 199 6 128 69 369

IEEE Case Algorithm % Feasible Solution No. of epochs Average Cost $/hr

30-Bus
Reference - - 565.3692

HT 100 20 565.5349
GD 100 20 582.3305

300-Bus
Reference - - 706322.2341

HT 100 50 706612.225
GD 100 50 706625.6001

min
𝑃𝑃𝑔𝑔,𝜃𝜃

�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖(𝑃𝑃𝑔𝑔𝑔𝑔)

s. t. 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔

B𝜃𝜃 = 𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑙𝑙

𝑏𝑏𝑖𝑖𝑖𝑖(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗) ≤ 𝑃𝑃𝑖𝑖𝑖𝑖 ∀(𝑖𝑖, 𝑗𝑗)



Generator Powers: IEEE 30-Bus 



Prediction Error Comparison



Future Work

• Testing on larger Test Cases (e.g., New England ISO)
• Extend the proposed framework to AC-OPF and eventually to Mixed-

Integer Problems
• Explore the training of NN to output LMPs
• Bridge the gap between theoretical results and simulation observations
• Investigate HT acceleration for certain classes of non-convex functions
• Accelerated HT techniques for constrained-optimization problems[1]

[1]  A. Parashar, P. Srivastava, A.M. Annaswamy, B. Dey, and A. Chakraborty, “Accelerated Algorithms for a Class of Optimization Problems with Constraints,” CDC 2022 (Submitted)
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