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Ubiquity of Distributed

Energy Resources

* Increased volatility and
uncertainty

* Optimal Power Flow (OPF)
problem needs to be solved
more often

* Curse of dimensionality due to
increasing DER penetration

* Need for fast solvers




Overall Idea

Input layer Hidden layers

System Powers,

load Angles

Training the neural network to handle constraints

Key Challenges

What if there is a need to re-train?




Outline




Learning-Based Constrained Optimization Problem

Solver

Partition Partition the decision variables into dependent and independent

Train Train NN to predict only independent variables with soft penalty

Complete Compute the dependent variables from equality constraints

Verif Ensure feasibility with respect to the inequality constraints
Y Y P q Y

I [1] X .Pan, T. Zhao, M. Chen and S. Zhang, "DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow," in IEEE Transactions on Power Systems
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DC-OPF using Neural Networks

bij(0; — 6,) <P;; V(i)

* NN is trained to output the generator powers

* Qutput layer consists of the sigmoidal function to handle capacity constraints
* Loss function consists of error and soft loss pertaining to the line flows

* Line angles are computed using the power flow equation

* If needed, post-processing is performed

W [1] X .Pan, T. Zhao, M. Chen and S. Zhang, "DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow," in IEEE Transactions on Power Systems @



Accelerated Training

* The underlying structure of the network might change often
* Model needs to be re-trained

* To ensure faster training, there is a need to go beyond vanilla
gradient-descent

* The size of NN prohibits the use of Newton-like methods as computing
the inverse of the Hessian is expensive

* Momentum-based methods which rely on only the gradient information
need to be explored



Linear Regression Models

Plant: y = ¢l 0*
Estimator: ) = ol0
Loss: 1
L(0) = §||¢T6 — 9|3 (any convex function of ¢)



Linear Regression Models
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Estimator: i =¢l0
Loss: ]
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Linear Regression Models

[0, Loss, L,
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(Gradient Descent) - First-order Tuners
0 = —yVoL(0)
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Algorithm

Plant: y = ¢l o*
Estimator: i = ¢t 0
Loss: 1
L:(0) = ngbTQ — 9|13 (any convex function of 0)

Gradient Descent, Normalized (GD,,):

- I
0(t) = ——=VoL:(0) " : learning rate > 0; N; =1+ ||9||5 : Normalization
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Accelerated Performance with a High-order Tuner

Q

[JJ. E. Gaudio, A. M. Annaswamy, M. A. Bolender, E. Lavretsky, and T. E. Gibson (2020). “A Class of High Order Tuners for Adaptive Systems”. IEEE Control Systems Letters.



Accelerated Performance with a High-order Tuner

High-Order Tuner (HT)!:

I(t) = —-L VL, (0(1)), Ny =1+ ||el®

lJJ. E. Gaudio, A. M. Annaswamy, M. A. Bolender, E. Lavretsky, and T. E. Gibson (2020). “A Class of High Order Tuners for Adaptive Systems”. |[EEE Control Systems Letters. @



Accelerated Performance with a High-order Tuner

High-Order Tuner (HT)!:

I(t) = —-L VL, (0(1)), Ni =14 |64

0(t) = —B(0(t) — I(2))-

Theorem: All solutions are globally bounded, with a Lyapunov function

1 1
V=9 —0"|I* + =10 — I||°
gl gl

lJJ. E. Gaudio, A. M. Annaswamy, M. A. Bolender, E. Lavretsky, and T. E. Gibson (2020). “A Class of High Order Tuners for Adaptive Systems”. |[EEE Control Systems Letters. @



Accelerated Performance (discrete-time)

W @)

[1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3™ LADC Conference, 2021.



Accelerated Performance (discrete-time)

Discrete and continuous High-Order Tunerlll:

Discrete Continuous
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Y = . —
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[1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021.




Accelerated Performance (discrete-time)

Discrete and continuous High-Order Tuner!!:

Discrete
_ VL.(0
AL R T
i AL
Or+1 = Ok — B(Or — V),
VLk(9k+1)

Q9k—|—1 — 19]{ -7 Nk

Theorem: All solutions are globally bounded, with a Ly
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Vi = —||9% — 0| +
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[1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3™ L4DC Conference, 2021.
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Accelerated Performance (discrete-time)

Discrete and continuous High-Order Tunerlll: I T

Proposed Discrete HT
— VL (0
k
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VLp(Ok+1)

Current Nnet algorithms:
Or+1 = Ok — ViV L(Ok)

Proposed Continuous HT
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Non-Asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

> Asymptotic Tools: f(0x) — f(6*) — 0 as k — oo

[1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021. @

| lZF . Nesterov (2018). Lectures on Convex Optimization. Springer. |



Non-Asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

> Asymptotic Tools: f(0x) — f(0*) — 0 as k — oo
> Non-asymptotic tools:
> GD: f(xx) — f(z*) <eif k> O(1/¢)
> Nesterovl?l: f(zr) — f(z*) < eif k > O(1/+/€)

[1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021. @
| LZF‘. . Nesterov (2018). Lectures on Convex Optimization. Springer. |



Non-Asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

> Asymptotic Tools: f(0x) — f(6*) — 0 as k — oo
> Non-asymptotic tools:

> GD: f(xy) — f(z¥) < eif k> O(1/e)
> Nesterovli?l: f(zy) — f(z*) < eif k > O(1//€)

Theorem : HT guarantees that!!!

— L (6%) < e for k > O(1//€-log(1/e))

_ (L
fe=1L (—k + gk) (gx small; ensures strong convexity)

[1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021. .).

| 2., Nesterov (2018). Lectures on Convex Optimization. Springer.



Non-Asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

|> AsymptOtlc TOOIS: f(@k) — f(@*) _> 0 as k_ _> 00 No. ofitaeratri(c::is;nnaifodnegiol?)c_rlieve an
> Non-asymptotic tools:

> GD: f(zy) — f(a*) < € if k > O(L/e)
> Nesterovl?: f(zp) — f(z*) < e if k > O(1/4/€)
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Theorem : HT guarantees thatll!
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L

— L (6%) < efor k> O(1/+/e-log(1/e))

L: Smoothness parameter.

- (L _
fe=1L (—k —I—Qk) (g9 small; ensures strong convexity)

[1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021. :.)
| LZF"- Nesterov (2018). Lectures on Convex Optimization. Springer. |



Non-asymptotic Properties: Example 1

Modified Smooth-Hard Problem, with time-varying regressors

Li(0r) =67, 0x||* + By 6k O

(quadratic, non-homogeneous, convex)
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Figure: 1] (a) At iteration kK = 500, step change in L from 2 to 8000. (b) At iteration k = 500, step change in L, from 2 to 8.
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| [1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021.



Image Deblurring: Example 2

Blurring can be caused by many factors:

* Movement during the image capture process, by the camera or, when long
exposure times are used, by the subject

* Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a short
exposure time, which reduces the number of photons captured

* Scattered light distortion in confocal microscopy

* Model for blurl'l
y=¢'0" +n

[1] https://www.mathworks.com/help/images/image-deblurring.html @

l


https://www.mathworks.com/help/images/image-deblurring.html

Non-asymptotic Properties: Example 2

Image Deblurring Problem: True image: 6*

Goal: Minimize Loss L (0x) = 5110% 0k — yill?

Algorithm
Original

Ly (By)/67
l—l
o
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o
N
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Gradient Descent ) Iteration Number, k Iteration Number, k

Nesterov Acceleration T.V. B Nesterov Accel.T.V.B Higher Order Tuner

—— Higher Order Tuner

Nesterov Accel.T.V.Bx Higher Order Tuner
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200 = |
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Ilteration Number, k
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Figure: [1](Left) Original and blurred images; increase of §; from 1 to 200 in 200 iterations, starting at kK = 500. (Center) Loss values and
reconstructed images when only ¢q is known a priori. (Right) Loss values and reconstructed images when all ¢ are known a priori.
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[1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021.



De-Blurring an Image with a Time-Varying Blur

>

I [1] Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183-202. @
[2] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 37 L4DC Conference, 2021.






High-Order Tuner with General Convex Function

Lyapunov function: V = % |9 — 6*||% + % |6 — 9|

Stability: AV, < 0

If in addition f is also u-strongly convex

Theorem Parameter convergence of HT with Hessianl!]

For a pu-strongly convex loss function L (), Algorithm 2

with0<ﬁ<1qnd0<yﬁﬁ(2_ﬁ)

ensures that I/ is a
16+6+u

Lyapunov function. Furthermore, for constant regressors,

Vi < exp(—uCk)V,, where C = %

W [1] Moreu, José M., and Anuradha M. Annaswamy. "A Stable High-order Tuner for General Convex Functions." IEEE L-CSS, 2021. @



High-order Tuner for Convex and Dynamic Loss Functions

Stable performance —— Gradient Descent
with dynamics -=-= Nesterov Smooth
—— High-order Tuner

Accelerated
performance

High-order Tuner
Nesterov Strongly Convex

—

—_————————

-
>

I 1o, 3|
10 1000 1500 2000 2500 3000 - - 1'5
Iteration number, & lteration number, & Iteration number, &

Step change in by, from 7 to 14 at k = 25 Step change in by, from 7 to 14 at k = 1500 No change in by,

Loss: L (0) = log(a,e? ® + a;,e~bx?) Loss: Ly () = log(axe’ ® + ae=x%) + % 16 — 6,1l

[1] Moreu, José M., and Anuradha M. Annaswamy. "A Stable High-order Tuner for General Convex Functions." /EEE L-CSS, 2021.
[2] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 37 L4DC Conference, 2021. @
[3] Gaudio, Joseph E., et al. "A Class of High Order Tuners for Adaptive Systems." IEEE L-CSS, 2020.




Summary So Far

* Solving OPF problems via learning the mapping between loads and
optimal generator set points

* A new algorithm utilizing HT with nice learning properties

Algorithm Constant Regressor # lterations Time-Varying Regressor
Gradient Descent Normalized O(1/e) Stable
Gradient Descent Fixed O(1/e) Unstable
Nesterov Acceleration Varying O(1/+/¢) Unstable
Nesterov Acceleration Fixed O(1//€-log(1/e)) Unstable

HT O(1//€-log(1/e)) Stable

* Theoretical guarantees only for convex loss functions!! Could we say
anything for general NN?

I [1] J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3™ L4ADC Conference, 2021. @



Case Studies on |[EEE 30 and 300-Bus Systems

IEEE Case

30-Bus

Algorithm
Reference
HT

Reference
HT

|IEEE Case N-load N-hidden N-neuron N-gen N-variables
30-Bus 20 2 16 6 36
300-Bus 199 6 128 69 369

% Feasible Solution No. of epochs Average Cost $/hr
- - 565.3692
100 20 565.5349

706322.2341
706612.225



Generator Powers: IEEE 30-Bus

B Reference (MATPOWER) [ High Order Tuner (y=0.1, f=09) [ Gradient Descent (y=0.1)
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Prediction Error Comparison
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Future Work

* Testing on larger Test Cases (e.g., New England ISO)

* Extend the proposed framework to AC-OPF and eventually to Mixed-
Integer Problems

* Explore the training of NN to output LMPs
* Bridge the gap between theoretical results and simulation observations
* Investigate HT acceleration for certain classes of non-convex functions

* Accelerated HT techniques for constrained-optimization problems!']

W [1] A. Parashar, P. Srivastava, A.M. Annaswamy, B. Dey, and A. Chakraborty, “Accelerated Algorithms for a Class of Optimization Problems with Constraints,” CDC 2022 (Submitted) @
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