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Electric Power Grid: Changing Nature and Requirements   

• In the United States, extreme 
weather caused nearly 70 percent 
more power outages from 2010-2019 
than the previous decade.

• Weather-related power outages cost 
Americans $20-55 billion annually 1. 

• Utility customers experienced 1.33 
billion outage hours in 2020, up 73% 
from roughly 770 million in 2019, 
according to PowerOutage.US, an 
aggregator of  utility blackout data.Billion-Dollar Disasters by Decade | Climate Matters 

(climatecentral.org)

Executive Office of the President, Economic Benefits of Increasing Electric Grid Resilience  to Weather Outages, (August 2013)

Dramatic increase of  extreme events related outages

https://medialibrary.climatecentral.org/resources/billion-dollar-disasters-by-decade-2020


Resilience: Power Distribution Systems

Outages due to damage:  Transformers, utility poles, overhead distribution lines are all 
vulnerable to severe weather, particularly high winds, heavy rain, ice, snow.

Outages due to public safety power shutoffs: Extreme weather events (wildfire risk, increased 
demand due to heatwave or cold front) stressing the supply system, PSPS disrupting the 
power supply to millions of  customers. 

June 25, 2021

Need an expedited incorporation of  resilience in 
the aging and stressed power distribution systems



• Very-large penetration of distributed 
energy resources - 2.5 million solar PV 
installations (2020)

• Emergence of new load types: 1.6 
million PHEVs/EVs sold (2020), in 5 
years data centers to use 10% of the U.S. 
energy

• Power electronic devices will be 
ubiquitous and layered hierarchical 
control schemes 

• Distributed coordination of  all 
controllable assets for higher level of  
flexibility among DERs

4

Changing nature and requirements of  the grid: 
decarbonized and distributed future

Electric Power Grid: Changing nature and requirements   
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How can Grid-Edge Provide Resilience?

How to keep the lights on?
• Non-traditional ways of  operating 

grid:
• Networked microgrids
• Demand-side flexibility to 

manage rare contingencies
• DERs for bulk grid support

Distributed Resources for Grid 
Support: 

• Distribution-level services 
(e.g., restoration)

• Bulk grid support (frequency 
and voltage regulation)

• Bulk grid support (black-start 
capability) 

Example: Networked Microgrid for restoration and bulk grid 
support 

Climate-resilient Power Grids: Operational Flexibility 
using Distributed Energy Resources
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Need: Add Operational Flexibility using Grid-Edge

Advanced operations to activate operational flexibility for Resilience using Grid-
Edge resources: 
• Scalable and robust approaches to coordinate/operate heterogenous distributed 

resources for operational flexibility. 

• Challenge: Large-scale Simulation and Optimization for non-linear (possibly high-
order) systems. 
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Summary of our work in this domain

Developed computationally tractable centralized algorithm1: iterative algorithms using 
approximation and relaxation

Mathematical decomposition to achieve scalability2: nodal decomposition with distributed 
computing for scalable nonlinear programming algorithms

Online feedback-based distributed control3: real-time control methods via nodal decomposition
Local control using Extremum-seeking algorithms4: combine IEEE 1547 volt-var curve with 
extremum-seeking controller for loss minimization 

Several applications of the proposed centralized and distributed OPF to conservation voltage 
reduction, distribution system restoration, topology and state estimation

Ongoing benchmarking studies on OPF Algorithms

1R. R. Jha and A. Dubey, “Network-Level Optimization for Unbalanced Power Distribution Systems: Approximation and Relaxation,” IEEE Transactions on Power Systems, March 2021. 
2R. Sadnan and A. Dubey, “Distributed Optimization using Reduced Network Equivalents for Radial Power Distribution Systems,” IEEE Transactions on Power Systems, Jan 2021.
3R. Sadnan, A. Dubey, “Real-Time Distributed Control of Smart Inverters for Network-level Optimization,” IEEE SmartGridComm 2020, Nov. 11-12, 2020, virtual format.
4H. Ren, R.R. Jha# , A. Dubey, “Extremum-Seeking Adaptive-Droop for Model-free and Localized Volt-VAR Optimization,” IEEE Transactions on Smart Grid, June 2021.

How to Coordinate Grid-edge Resources for Resilience?



Scalable Approaches for Grid-Edge Optimization 

• Distributed Optimization –
• State-of-the-art for requires ≥ 100

communication rounds to solve one step of  
optimization

• Feedback/Online distributed control -
• Several steps of  iteration to track the optimal 

solution
• Intermediate iterates may violate the 

operating constraints
Solutions: 
(1) Distributed optimization algorithms that take fewer macro-iterations to converge
(2) Feedback/Online Control algorithms that can track the optimal solutions within a few steps
Key observation – Distribution feeders are operationally radial or weakly meshed 
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• Single voltage source 
• Radial topology 
• Voltage from upstream 

smart agents
• Equivalent power flow 

from downstream nodes

Proposed Distributed Optimization Algorithm



• Worked on convergence proof  for single-phase system
• Expanded to three-phase systems 
• Incorporated mixed-integer formulations (cap banks, regulators)

Distributed computing/distributed optimization:

Results and Discussions  

R. Sadnan#, S. Poudel, and A. Dubey, “Layered Coordination Architecture for Resilient Restoration of Power Distribution Systems,” submitted to IEEE Transactions on Industrial 
Informatics, May 2022.
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Applications: Distributed Control of Islanded Microgrids 

Robust Distributed Control for Power Sharing in Islanded Industrial Microgrids - stable voltage and 
frequency response

Contributions
• Distributed controllers for power sharing with an emphasis on minimizing communication and integrating 

local droop control methods and proper network models
• Performance and stability of  the proposed distributed power sharing controllers via theoretical analysis and 

simulations.

Decomposable problem structure 

Use of  mathematical 
optimization techniques to 
decompose problem into 
distributed structure and design 
real-time control law. 

• Andrew I.H. Cannon, A. Dubey, G. Zweigle. and E. Blood, “Distributed Optimal Reactive Power Control in Islanded Microgrids with Voltage-Source Inverters,” IEEE PowerTech 2021. 
• A.A. Maruf, A. Dubey, and S. Roy, “Small-Signal Voltage Stability Analysis for Droop Controlled Inverter-based Microgrids: An Algebraic Graph Theory Perspective,” IEEE PES GM 2021
• Abdullah Al Maruf, Mohammad Ostadijafari#, Anamika Dubey, and Sandip Roy, “Small-Signal Stability Analysis for Droop-Controlled Inverter-based Microgrids with Losses and 

Delays,” ACM e-Energy Conference’19, June 2019, Phoenix, AZ, USA



Applications: DERs for Bulk Grid Support
• Algorithms for Distributed Coordination of  Networked Microgrids for bulk grid service

• Active power dispatch for frequency support
• Voltage control and Reactive Power Support 

• Impact in Transmission Systems Dynamic Response

• Effects of  Communication Systems on Control for Bulk-grid services

 

Bulk Grid Distribution Systems (with 
networked microgrids)

P and Q 
dispatch



Control and Optimization: Active Power Distribution Systems
Coordinate grid-edge devices by integrating data, measurement, and control to optimize 
distribution operations for grid services

Distribution Grid Optimization at-the-edge-interfacing
 Algorithmic bottlenecks
 Ownership boundaries and privacy concerns
 Information unavailability and uncertainty
 Visibility and situational awareness

Centralized Optimization  Distributed Optimization 

Integration with PNNL’s GridAPPS-D platform – an 
opensource platform to develop ADMS applications

1F-1

F-2

A 1

A 2

A 3

A 4

Advanced Distribution Management 
System: ADMS

Distributed 
Agent 2 Distributed 

Agent 1

Distributed 
Agent 3

Distributed 
Agent 4

Layered coordination architecture for 
distributed applications

S. Poudel, A. Dubey, P. Sharma, and Kevin P. Schneider, “Advanced FLISR with Intentional Islanding Operations in an ADMS Environment Using GridAPPS-D,” IEEE Access, May 2020.
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Next Steps - Motivation for Learning-based Approach 

Optimal power flow algorithms have 

– Limited capability in handling fast dynamic systems – frequency support?

– Computation complexity increases linearly with network size

– The solution timescale is not sufficient for fast response required from frequency 
regulation applications

Learn to control - Reinforcement learning (RL) algorithms

Our Contributions:
• RL algorithms for Fast/real-time optimization/operations 
• Imitation Learning: Use data to improve approximate (low-compute) optimization 

models for very fast decisions1

• An opensource environment to call packages and make it easy to implement RL for 
power distribution systems application2

1Gayathri Krishnamoorthy, Anamika Dubey, and Assefaw H. Gebremedhin, “Reinforcement Learning for Battery Energy Storage Dispatch augmented with Model-based 
Optimizer,” presented, IEEE SmartGridComm 2021, Aachen, Germany, 24-28 Oct. 2021
2G. Krishnamoorthy, A. Dubey, and A. H. Gebremedhin, “An Open-source Environment for Reinforcement Learning in Power Distribution Systems,” IEEE PES General Meeting, 
2022 (accepted)
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Next Steps – Complex Models for Grid-Edge Devices 

Optimal power flow algorithms have 

– Limited capability to manage complex nonlinear and possibly high-order models for 
grid-edge devices, such as grid-interactive building with programmable thermostat  

– Enabling operational flexibility requires simulating and solving some optimization 
problem with these complex grid-edge devices

Surrogate (reduced-order dynamic) models for Grid-Edge to manage complexity. 

Ongoing work:
• Large-scale simulations with multiple grid-interactive commercial building
• Grey-box (controllable) model using dynamic single-zone approximation 
• Validation on Pecan Steet Data for residential buildings and against EnergyPlus simulator for 

commercial buildings
• Similar questions for power-electronics-interfaced grid-edge devices especially in an islanded 

condition.
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Need – Add Operational Flexibility at the Grid-Edge

Planning to Enable Operational Flexibility from Grid-Edge Resources: How to 
economically add operational flexibility to the grid to improve their response during extreme 
weather events?

• High-impact low-probability event
• Weather-grid impact model – Multiple 

sources of  uncertainty
• Risk quantification – HILP and tail 

probabilities 
• Evaluate planning tradeoffs 

• Algorithmic framework to evaluate risk-cost 
tradeoffs to optimally plan for operational 
flexibility

• Challenge: Large-scale Risk-averse 
Optimization 

Example: Where to place DGs, which lines to 
harden? 

Substation

S

D

D

D
Distributed Energy 

Resource

D

Sectionalizing switch

Tie switch

D

Planning Decisions 
(location and size/capacity)

Hardened lines
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Quantifying Weather-grid Impacts

A simulation-based 
approach 

Data generation
• Opensource data for 

event modeling
• Hypothetical fragility 

curves 
• Monte-Carlo 

simulations

Probabilistic quantification 
of  the impacts (risks)

A. Poudyal, V. Iyengar, D. Garcia-Camargo, and Anamika Dubey “Spatiotemporal Impact Assessment of Hurricanes on Electric Power Systems,” IEEE PES General Meeting, 2022 
(accepted).
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Defining Objective Function 

• Shiva Poudel, Anamika Dubey, and Anjan Bose, “Risk-based Probabilistic Quantification of Power Distribution System Operational Resilience,” IEEE Systems Journal on Aug 2019.
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Risk-averse Optimization 
Conditional value at risk in the objective : 

• a tradeoff  parameter 𝜆𝜆 can differentiate the risk-neutral vs risk-averse objective

𝒎𝒎𝒎𝒎𝒎𝒎
𝒙𝒙

𝒄𝒄𝑻𝑻𝐱𝐱 + (𝟏𝟏 − 𝝀𝝀)𝔼𝔼𝝆𝝆𝐐𝐐 𝛏𝛏,𝒙𝒙 + 𝝀𝝀𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝜶𝜶(𝐐𝐐 𝝃𝝃,𝒙𝒙 )
tradeoff  for 

risk-neutral vs 
risk-averse

𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝛼𝛼 Z = inf
𝜂𝜂∈ℝ

𝜂𝜂 +
1

1 − 𝛼𝛼𝔼𝔼(max( 𝑍𝑍 − 𝜂𝜂 , 0)

where,

Mean-risk function with 𝑪𝑪𝑪𝑪𝑪𝑪𝑹𝑹𝜶𝜶 as risk measure:
where, 𝝀𝝀 is the non-negative trade-off  coefficient known as the risk coefficient

min
𝑥𝑥∈𝕏𝕏

{𝔼𝔼 𝑓𝑓 𝑥𝑥,𝜔𝜔 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑅𝑅𝛼𝛼[𝑓𝑓(𝑥𝑥,𝜔𝜔)]}

where, 𝜂𝜂 = value-at-risk

Higher the value of  𝝀𝝀, higher is the risk aversion



1Optimal coordination of  all assets for a 
given realization of  extreme event

Risk-averse Optimization to Improve Resilience 

2Numerically quantify the impacts of  an event 
with and without planning solutions

min
𝑥𝑥
𝑐𝑐𝑇𝑇𝑥𝑥 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑥𝑥)
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Example - Resilience Planning: Two-stage Stochastic Program 

Substation

S

D

D

D

D

A two-stage stochastic optimization formulation
• Stage 1 (pre-event) planning decisions - line hardening, DG placement, etc. (Sampling and 

impact assessment via simulation framework)
• Stage 2 (post-event) operational decisions - DG-assisted restoration, intentional islanding (solve 

optimal coordination problem)

Optimize CVaR metric - Resilience planning for power distribution system

Stage 1 : pre-event planning Original distribution system Stage 2: post-event operations 



Two-Stage Risk-averse Stochastic Program for Distribution 
System Planning (First Stage) 

Substation

S

D

D

D

D

Stage 1 (Decision Variables) – location 
and sizes of  planning decisions (DGs, 
switches, line hardening)

Need to be optimal for possible realization 
of fault scenarios

Stochastic optimization 
with mixed-integer 

recourse



Stage 2 (Decision Variables) – How to optimally restore the 
network for a give realization of  outages/fault

Two-Stage Risk-averse Stochastic Program for Distribution 
System Planning (Second Stage) 

Objective function: 
• Maximize the amount of  load restored
• Minimize the cost of  switching

Constraints
• Connectivity constraints

• Switch and load decision
• Radial operation

• Operational constraints
• Power flow and voltage constraints
• Network operating constraints
• DG limit constraints

For each scenario 

Mixed-integer linear 
program 



Solving the two-stage problem: Methods

All methods convert stochastic problem to a deterministic problem

Sampling-based approaches: Extensive form, create multiple copies of 
second stage problem, solve a large single-stage deterministic optimization 
problem, most accurate, scenario selection is crucial

Progressive hedging: relax non anticipativity constraint, primal and dual of 
convex stochastic problems, fast algorithm → parallelizable

Stochastic Dual Dynamic Programming: Great in a multi-stage setting, 
stage-wise decomposition of the problem



Results and Discussions 

Impacts of DG budget constraints

• Tested with IEEE 123 bus test system upgraded with sectionalizing and tie switches for restoration.
• Question was – what are optimal DG locations if  the budget for DGs is constrained
• Goal was to compare risk-neutral and risk-averse planning decisions 

λ = 0 (risk-neutral) λ = 1 (risk-averse)

VAR 3210 3210
CVaR 19093.89 18885.9

Expected value 3567.12 3595.51

Expected 
Prioritized 

Critical Load 
Pickup

15043.93 15006.62 

CVaR
Of Prioritized 
Critical Load 

Pickup

3406.59 3603.06 

Abodh Poudyal, Shiva Poudel, Anamika Dubey, Risk-based Active Distribution System Planning for Resilience against Extreme Weather Events, submitted to IEEE Transaction on 
Sustainable Energy (second round of review)



Ongoing and Future Work

Scaling for lager feeders and higher number of scenarios: 

– Extensive form leads to a very large-scale mixed-integer linear program, 
progressive hedging results in large optimality gap

Future work includes: (1) use of  
parallel computing techniques to 
scale for larger number of  
scenarios, (2) value-function 
approximation to scale the 
problem for large networks

Collaboration with utility 
companies on using real-world 
data to improve weather-grid 
impact models

For a small 123-bus distribution system: see 
accuracy vs. compute time tradeoff  
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• Growing complexity of  Grid operations: Scalable simulation and optimization is key to study and 
operate the complex power grid.

System of  systems – complexity Changing nature and requirements 
of  the grid at the edge interfacing 

Scalability for interconnected 
T&D systems

https://www.wecc.org/

Key Takeaways
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