

Ι

Dynamic Virtual Power Plant Control

Autonomous Energy Systems Workshop

Florian Dörfler

Acknowledgements

Verena Häberle (ETH Zürich)

Michael W. Fisher (Univ. Waterloo)

Ali Tayyebi (Hitachi)

oi)

Xiuqiang He (ETH Zürich)

Eduardo Prieto-Araujo (UP Catalunya)

Joakim Björk Svenska Kraftnät

Further: Gabriela Hug, Karl Henrik Johansson, & POSYTYF partners

Outline

- 1. Introduction & Motivation
- 2. DVPP Design as Coordinated Model Matching
- 3. Decentralized Control Design Method
- 4. Grid-Forming & Spatially Distributed DVPP
- 5. Conclusions

Outline

1. Introduction & Motivation

2. DVPP Design as Coordinated Model Matching

3. Decentralized Control Design Method

4. Grid-Forming & Spatially Distributed DVPP

5. Conclusions

Selected challenges in future power systems

- conventional power systems
 - dispatchable generation
 - significant inertial response
 - fast frequency & voltage control

provided by bulk synchronous generation

- future power systems
 - variable generation
 - reduced inertia levels
 - ancillary services for frequency & voltage

provided by distributed energy resources (DERs)

Selected challenges in future power systems

- conventional power systems
 - dispatchable generation
 - significant inertial response
 - fast frequency & voltage control

provided by bulk synchronous generation

- future power systems
 - variable generation
 - reduced inertia levels
 - ancillary services for frequency & voltage

provided by distributed energy resources (DERs)

- some of the manifold challenges
 - brittle grids: intermittency & uncertainty of renewables & reduced inertia levels
 - device fragility: converter-interfaced DERs limited in energy, power, fault currents, ...
 - ancillary services on ever faster time scales & shouldered by distributed sources

- heterogenous collection of devices
 - reliable provide services consistently across all power & energy levels and all time scales
 - none of the devices itself is able to do so

- heterogenous collection of devices
 - reliable provide services consistently across all power & energy levels and all time scales
 - none of the devices itself is able to do so
- dynamic ancillary services
 - fast response (brittle grids), e.g., inertia
 - specified as desired dynamic I/O response
 - robustly implementable on fragile devices

- heterogenous collection of devices
 - reliable provide services consistently across all power & energy levels and all time scales
 - none of the devices itself is able to do so
- dynamic ancillary services
 - fast response (brittle grids), e.g., inertia
 - specified as desired dynamic I/O response
 - robustly implementable on fragile devices
- coordination aspect
 - decentralized control implementation
 - real-time adaptation to variable DVPP generation & ambient grid conditions

DVPP: coordinate a heterogeneous ensemble of DERs to collectively provide dynamic ancillary services

- heterogenous collection of devices
 - reliable provide services consistently across all power & energy levels and all time scales
 - none of the devices itself is able to do so
- dynamic ancillary services
 - fast response (brittle grids), e.g., inertia
 - specified as desired dynamic I/O response
 - robustly implementable on fragile devices
- coordination aspect
 - decentralized control implementation
 - real-time adaptation to variable DVPP generation & ambient grid conditions

motivating examples

- frequency containment provided by non-minimum phase hydro & on-site batteries (for fast response)
- wind providing fast frequency response & voltage support augmented with storage to recharge turbine
- hybrid power plants, e.g., PV + battery + supercap
- load/generation aggregators & balancing groups

Abstraction: coordinated model matching

- setup (simplified): DVPP consisting of
 - DERs connected at a common bus
 - PMU frequency measurement at point of common coupling broadcasted to all DERs

Abstraction: coordinated model matching

- setup (simplified): DVPP consisting of
 - DERs connected at a common bus
 - PMU frequency measurement at point of common coupling broadcasted to all DERs
- DVPP aggregate specification (ancillary service):
 - grid-following fast frequency response (inertia & damping)

 $power = (Hs + D) \cdot frequency$

(later: also forming + distributed + voltage ...)

Abstraction: coordinated model matching

- setup (simplified): DVPP consisting of
 - DERs connected at a common bus
 - PMU frequency measurement at point of common coupling broadcasted to all DERs
- DVPP aggregate specification (ancillary service):
 - grid-following fast frequency response (inertia & damping)

power = $(Hs + D) \cdot$ frequency

(later: also forming + distributed + voltage ...)

- task: coordinated model matching
 - design decentralized DER controls so that the aggregate behavior matches specification

 $\sum_{i} \mathsf{power}_{i} = (Hs + D) \cdot \mathsf{PMU}$ -frequency

- while taking device-level constraints into account
- & online adapting to variable DVPP generation

with J. Björk (Svenska kraftnät) & K.H. Johansson (KTH)

aggregated 5-bus Nordic model

with J. Björk (Svenska kraftnät) & K.H. Johansson (KTH)

 $\bullet \ \ \textbf{FCR-D service} \rightarrow \textbf{desired behavior}$

power	$3100 \cdot (6.5s + 1)$
frequency	$\overline{(2s+1)(17s+1)}$

aggregated 5-bus Nordic model

with J. Björk (Svenska kraftnät) & K.H. Johansson (KTH)

aggregated 5-bus Nordic model

 $\bullet \ \ \textbf{FCR-D service} \rightarrow \textbf{desired behavior}$

power	$3100 \cdot (6.5s + 1)$
frequency	(2s+1)(17s+1)

 well-known issue: actuation of hydro via governor is non-minimum phase
→ initial power surge opposes control
→ highly unsatisfactory response

with J. Björk (Svenska kraftnät) & K.H. Johansson (KTH)

aggregated 5-bus Nordic model

- FCR-D service \rightarrow desired behavior $\frac{power}{frequency} = \frac{3100 \cdot (6.5s + 1)}{(2s + 1)(17s + 1)}$
- well-known issue: actuation of hydro via governor is non-minimum phase → initial power surge opposes control
 - \rightarrow highly unsatisfactory response

 discussed solution: augment hydro with batteries for faster response
→ works but not very economic

with J. Björk (Svenska kraftnät) & K.H. Johansson (KTH)

aggregated 5-bus Nordic model

- FCR-D service \rightarrow desired behavior $\frac{power}{frequency} = \frac{3100 \cdot (6.5s + 1)}{(2s + 1)(17s + 1)}$
- well-known issue: actuation of hydro via governor is non-minimum phase
 → initial power surge opposes control
 → highly unsatisfactory response

- discussed solution: augment hydro with batteries for faster response
 → works but not very economic
- better DVPP solution: coordinate hydro & wind to cover all time scales

7/32

with J. Björk (Svenska kraftnät) & K.H. Johansson (KTH)

aggregated 5-bus Nordic model

- FCR-D service \rightarrow desired behavior $\frac{power}{frequency} = \frac{3100 \cdot (6.5s + 1)}{(2s + 1)(17s + 1)}$
- well-known issue: actuation of hydro via governor is non-minimum phase
 → initial power surge opposes control
 → highly unsatisfactory response

- discussed solution: augment hydro with batteries for faster response
 → works but not very economic
- better DVPP solution: coordinate hydro & wind to cover all time scales

Outline

1. Introduction & Motivation

2. DVPP Design as Coordinated Model Matching

3. Decentralized Control Design Method

4. Grid-Forming & Spatially Distributed DVPP

5. Conclusions

Problem setup & variations

one can conceive **complex problem setups** with DVPPs spanning transmission / distribution, multiple areas, forming / following $\ldots \rightarrow$ **start simple for now**

Problem setup & variations

one can conceive **complex problem setups** with DVPPs spanning transmission/distribution, multiple areas, forming/following $\ldots \rightarrow$ **start simple for now**

- DVPP consists of controllable & non-controllable devices (whose I/O behavior cannot be altered)
- topology: all DVPP devices at common bus bar (later also spatially distributed setup)
- grid-following signal causality: power injection controlled as function of voltage measurement (later also grid-forming setup)

- global broadcast signal $\begin{bmatrix} \Delta f \\ \Delta ||v|| \end{bmatrix}$
- global aggregated power output

$$\begin{bmatrix} \Delta p_{\text{agg}} \\ \Delta q_{\text{agg}} \end{bmatrix} = \sum_{i \in \mathcal{N} \cup \mathcal{C}} \begin{bmatrix} \Delta p_i \\ \Delta q_i \end{bmatrix}$$

- global broadcast signal $\begin{bmatrix} \Delta f \\ \Delta ||v|| \end{bmatrix}$
- global aggregated power output

$$\begin{bmatrix} \Delta p_{\text{agg}} \\ \Delta q_{\text{agg}} \end{bmatrix} = \sum_{i \in \mathcal{N} \cup \mathcal{C}} \begin{bmatrix} \Delta p_i \\ \Delta q_i \end{bmatrix}$$

• fixed local closed-loop behaviors $T_i(s)$ of **non-controllable devices** $i \in \mathcal{N}$

(e.g., closed-loop hydro/governor model)

- global broadcast signal $\begin{bmatrix} \Delta f \\ \Delta ||v|| \end{bmatrix}$
- global aggregated power output

 $\begin{bmatrix} \Delta p_{\mathrm{agg}} \\ \Delta q_{\mathrm{agg}} \end{bmatrix} = \sum_{i \in \mathcal{N} \cup \mathcal{C}} \begin{bmatrix} \Delta p_i \\ \Delta q_i \end{bmatrix}$

- fixed local closed-loop behaviors T_i(s) of non-controllable devices i ∈ N (e.g., closed-loop hydro/governor model)
- devices *i* ∈ C with controllable closed-loop behaviors *T_i*(*s*) (e.g., battery sources)

- global broadcast signal $\begin{bmatrix} \Delta f \\ \Delta ||v|| \end{bmatrix}$
- global aggregated power output

 $\begin{bmatrix} \Delta p_{\mathrm{agg}} \\ \Delta q_{\mathrm{agg}} \end{bmatrix} = \sum_{i \in \mathcal{N} \cup \mathcal{C}} \begin{bmatrix} \Delta p_i \\ \Delta q_i \end{bmatrix}$

- fixed local closed-loop behaviors T_i(s) of non-controllable devices i ∈ N (e.g., closed-loop hydro/governor model)
- devices *i* ∈ C with controllable closed-loop behaviors *T_i*(*s*) (e.g., battery sources)
- overall aggregate DVPP behavior

$$\begin{bmatrix} \Delta p_{\text{agg}}(s) \\ \Delta q_{\text{agg}}(s) \end{bmatrix} = \sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \begin{bmatrix} \Delta f(s) \\ \Delta ||v||(s) \end{bmatrix}$$

Coordinated model matching

• overall aggregate DVPP behavior

$$\begin{bmatrix} \Delta p_{\text{agg}}(s) \\ \Delta q_{\text{agg}}(s) \end{bmatrix} = \sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \begin{bmatrix} \Delta f(s) \\ \Delta ||v||(s) \end{bmatrix}$$

• desired DVPP specification: decoupled f-p & v-q control (later: also consider couplings)

$$\begin{bmatrix} \Delta p_{\rm des}(s) \\ \Delta q_{\rm des}(s) \end{bmatrix} = \underbrace{ \begin{bmatrix} T_{\rm des}^{\rm fp}(s) & 0 \\ 0 & T_{\rm des}^{\rm vq}(s) \end{bmatrix}}_{=T_{\rm des}(s)} \begin{bmatrix} \Delta f(s) \\ \Delta ||v||(s) \end{bmatrix}$$

Coordinated model matching

• overall aggregate DVPP behavior

$$\begin{bmatrix} \Delta p_{\text{agg}}(s) \\ \Delta q_{\text{agg}}(s) \end{bmatrix} = \sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \begin{bmatrix} \Delta f(s) \\ \Delta ||v||(s) \end{bmatrix}$$

• desired DVPP specification: decoupled f-p & v-q control (later: also consider couplings)

$$\begin{bmatrix} \Delta p_{\rm des}(s) \\ \Delta q_{\rm des}(s) \end{bmatrix} = \underbrace{ \begin{bmatrix} T_{\rm des}^{\rm fp}(s) & 0 \\ 0 & T_{\rm des}^{\rm vq}(s) \end{bmatrix}}_{=T_{\rm des}(s)} \begin{bmatrix} \Delta f(s) \\ \Delta ||v||(s) \end{bmatrix}$$

 \rightarrow aggregation condition: $\sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \stackrel{!}{=} T_{\mathrm{des}}(s)$

Coordinated model matching

• overall aggregate DVPP behavior

$$\begin{bmatrix} \Delta p_{\text{agg}}(s) \\ \Delta q_{\text{agg}}(s) \end{bmatrix} = \sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \begin{bmatrix} \Delta f(s) \\ \Delta ||v||(s) \end{bmatrix}$$

• desired DVPP specification: decoupled f-p & v-q control (later: also consider couplings)

$$\begin{bmatrix} \Delta p_{\rm des}(s) \\ \Delta q_{\rm des}(s) \end{bmatrix} = \underbrace{ \begin{bmatrix} T_{\rm des}^{\rm fp}(s) & 0 \\ 0 & T_{\rm des}^{\rm vq}(s) \end{bmatrix}}_{=T_{\rm des}(s)} \begin{bmatrix} \Delta f(s) \\ \Delta ||v||(s) \end{bmatrix}$$

 \rightarrow aggregation condition: $\sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \stackrel{!}{=} T_{\text{des}}(s)$

DVPP control problem

Find local controllers such that the DVPP aggregation condition & local device-level specifications are satisfied.

Outline

1. Introduction & Motivation

2. DVPP Design as Coordinated Model Matching

3. Decentralized Control Design Method

4. Grid-Forming & Spatially Distributed DVPP

5. Conclusions

Running case studies

Original 9 bus system setup

Running case studies

DVPP 1 for freq. control

$$\Delta p = T_{\rm des}(s) \,\Delta f$$
$$T_{\rm des}(s) = \frac{-D}{\tau s + 1},$$

Running case studies

Τ

DVPP 1 for freq. control

$$\Delta p = T_{\rm des}(s) \,\Delta f$$
$$G_{\rm des}(s) = \frac{-D}{\tau s + 1},$$

DVPP 3 for freq. & volt. control

 $\begin{bmatrix} \Delta p \\ \Delta q \end{bmatrix} = T_{\text{des}}(s) \begin{bmatrix} \Delta f \\ \Delta ||v|| \end{bmatrix}$ $T_{\text{des}}(s) = \begin{bmatrix} \frac{-D_{\text{p}} - Hs}{\tau_{\text{p}} s + 1} & 0 \\ 0 & \frac{-D_{\text{q}}}{\tau_{\text{q}} s + 1} \end{bmatrix}$

Divide & conquer strategy

with V. Häberle (ETH Zürich), M. W. Fisher (Univ. Waterloo), & E. Prieto (UPC)

Divide & conquer strategy

with V. Häberle (ETH Zürich), M. W. Fisher (Univ. Waterloo), & E. Prieto (UPC)

aggregation condition: $\sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \stackrel{!}{=} T_{des}(s)$

Divide & conquer strategy

with V. Häberle (ETH Zürich), M. W. Fisher (Univ. Waterloo), & E. Prieto (UPC)

aggregation condition: $\sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \stackrel{!}{=} T_{des}(s)$

Divide & conquer strategy

with V. Häberle (ETH Zürich), M. W. Fisher (Univ. Waterloo), & E. Prieto (UPC)

aggregation condition: $\sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \stackrel{!}{=} T_{des}(s)$

Disaggregation & pooling

• disaggregation of DVPP specification via dynamic participation matrices

$$T_i(s) = M_i(s) \cdot T_{des}(s)$$
 $M_i(s) = \begin{bmatrix} m_i^{fp}(s) & 0\\ 0 & m_i^{vq}(s) \end{bmatrix}$

where diagonals $m_i^{\rm fp}, m_i^{\rm vq}$ are dynamic participation factors (DPFs) for f-p & v-q channels

Disaggregation & pooling

• disaggregation of DVPP specification via dynamic participation matrices

$$T_i(s) = M_i(s) \cdot T_{des}(s)$$
 $M_i(s) = \begin{bmatrix} m_i^{fp}(s) & 0\\ 0 & m_i^{vq}(s) \end{bmatrix}$

where diagonals $m_i^{\rm fp}, m_i^{\rm vq}$ are dynamic participation factors (DPFs) for f-p & v-q channels

• resulting DVPP aggregation condition

Disaggregation & pooling

disaggregation of DVPP specification via dynamic participation matrices

$$T_i(s) = M_i(s) \cdot T_{des}(s)$$
 $M_i(s) = \begin{bmatrix} m_i^{fp}(s) & 0\\ 0 & m_i^{vq}(s) \end{bmatrix}$

where diagonals $m_i^{\rm fp}, m_i^{\rm vq}$ are dynamic participation factors (DPFs) for f-p & v-q channels

• resulting DVPP aggregation condition

$$\sum_{i \in \mathcal{N} \cup \mathcal{C}} T_i(s) \stackrel{!}{=} \sum_{i \in \mathcal{N} \cup \mathcal{C}} M_i(s) \cdot T_{des}(s) = T_{des}(s),$$
• participation condition:
$$\sum_{i \in \mathcal{N} \cup \mathcal{C}} M_i(s) \stackrel{!}{=} I_2$$
or element-wise for the DPFs:
$$\sum_{i \in \mathcal{N} \cup \mathcal{C}} m_i^{\text{fp}}(s) \stackrel{!}{=} 1 \quad \& \quad \sum_{i \in \mathcal{N} \cup \mathcal{C}} m_i^{\text{vq}}(s) \stackrel{!}{=} 1$$

Dynamic participation factor (DPF) selection

• fixed DPFs $m_i(s) = (T_{des}(s))^{-1} \cdot T_i(s)$ for non-controllable devices $\rightarrow T_i(s)$ unchanged

Dynamic participation factor (DPF) selection

- fixed DPFs $m_i(s) = (T_{des}(s))^{-1} \cdot T_i(s)$ for non-controllable devices $\rightarrow T_i(s)$ unchanged
- DPFs of controllable devices = transfer functions characterized by
 - time constant τ_i for the roll-off frequency to account for bandwidth
 - **DC gain** $m_i(0) = \mu_i$ to account for peak power limitations

Dynamic participation factor (DPF) selection

(subscripts f-p and v-q channel omitted)

- fixed DPFs $m_i(s) = (T_{des}(s))^{-1} \cdot T_i(s)$ for non-controllable devices $\rightarrow T_i(s)$ unchanged
- DPFs of controllable devices = transfer functions characterized by
 - time constant τ_i for the roll-off frequency to account for bandwidth
 - **DC gain** $m_i(0) = \mu_i$ to account for peak power limitations

low-pass filter participation

for devices providing regulation on longer time-scale & steady -state contributions (e.g., RES)

high-pass filter participation

for devices providing very fast response (e.g., super-caps)

$$m_i(s) = \frac{\tau_i s}{\tau_i s + 1}$$

band-pass filter participation

for devices covering the intermediate regime (e.g., batteries)

$$m_i(s) = \frac{(\tau_i - \tau_j)s}{(\tau_i s + 1)(\tau_j s + 1)}$$

Running case studies - DPF selection for f-p channel

Case study II: sync. generator replacement

control objective: for each controllable device, design a local matching controllers such that the local closed-loop behavior matches the local desired specification $T_i(s) \stackrel{!}{=} M_i(s) \cdot T_{des}(s)$

control objective: for each controllable device, design a local matching controllers such that the local closed-loop behavior matches the local desired specification $T_i(s) \stackrel{!}{=} M_i(s) \cdot T_{des}(s)$

• setup for **matching control design** of device *i*: either feed tracking error into standard cascaded converter loops...

control objective: for each controllable device, design a local matching controllers such that the local closed-loop behavior matches the local desired specification $T_i(s) \stackrel{!}{=} M_i(s) \cdot T_{des}(s)$

 setup for matching control design of device *i*: either feed tracking error into standard cascaded converter loops...or better go for principled design

control objective: for each controllable device, design a local matching controllers such that the local closed-loop behavior matches the local desired specification $T_i(s) \stackrel{!}{=} M_i(s) \cdot T_{des}(s)$

 setup for matching control design of device *i*: either feed tracking error into standard cascaded converter loops...or better go for principled design

• consider **augmented state** $z = \begin{bmatrix} x & x^r & \int \varepsilon \end{bmatrix}$ with integrated matching error $\varepsilon = y - y^r$ for tracking

control objective: for each controllable device, design a local matching controllers such that the local closed-loop behavior matches the local desired specification $T_i(s) \stackrel{!}{=} M_i(s) \cdot T_{des}(s)$

 setup for matching control design of device *i*: either feed tracking error into standard cascaded converter loops...or better go for principled design

- consider **augmented state** $z = \begin{bmatrix} x & x^r & \int \varepsilon \end{bmatrix}$ with integrated matching error $\varepsilon = y y^r$ for tracking
- *H*_∞ optimal static feedback control *K* obtained by minimizing the matching error

control objective: for each controllable device, design a local matching controllers such that the local closed-loop behavior matches the local desired specification $T_i(s) \stackrel{!}{=} M_i(s) \cdot T_{des}(s)$

 setup for matching control design of device *i*: either feed tracking error into standard cascaded converter loops...or better go for principled design

- consider **augmented state** $z = \begin{bmatrix} x & x^r & \int \varepsilon \end{bmatrix}$ with integrated matching error $\varepsilon = y y^r$ for tracking
- *H*_∞ optimal static feedback control *K* obtained by minimizing the matching error

 include ellipsoidal constraints for transient device limitations, e.g., hard current constraints

Case study I - simulation results

- poor frequency response of stand-alone hydro unit
- significant improvement by DVPP 1
- good matching of desired active power injections (dashed lines)

- adaptive dynamic participation factors (ADPF) with time-varying DC gains: $m_i(0) = \mu_i(t)$
- online update of DC gains proportionately to time-varying power capacity limits of variable sources

- adaptive dynamic participation factors (ADPF) with time-varying DC gains: $m_i(0) = \mu_i(t)$
- online update of DC gains proportionately to time-varying power capacity limits of variable sources
- requires centralized (broadcast) or distributed peer-to-peer (consensus) communication

- adaptive dynamic participation factors (ADPF) with time-varying DC gains: $m_i(0) = \mu_i(t)$
- online update of DC gains proportionately to time-varying power capacity limits of variable sources
- requires centralized (broadcast) or distributed peer-to-peer (consensus) communication

• LPV \mathcal{H}_{∞} control to account for parameter-varying local reference models $M_i(s) \cdot T_{des}(s)$

Running case study II - ADPFs of f-p channel before & during cloud

before cloud (nominal)

during cloud

Case study II - simulation results

 $\overline{\Delta}p_{wind}$

 Δq_{wind}

 $\Delta q_{\rm pv}$

 Δa_{-}

 $\Delta p_{\rm pv}$

- adequate replacement of frequency & voltage control of prior SG 3
- good matching of desired active & reactive power injections (dashed lines)
- unchanged overall DVPP behavior during step decrease in PV capacity

Outline

1. Introduction & Motivation

2. DVPP Design as Coordinated Model Matching

3. Decentralized Control Design Method

4. Grid-Forming & Spatially Distributed DVPP

5. Conclusions

Grid-forming DVPP control

with V. Häberle & X. He (ETH Zürich), E. P. Araujo (UPC), & Ali Tayyebi (Hitachi Energy)

Grid-forming DVPP control

with V. Häberle & X. He (ETH Zürich), E. P. Araujo (UPC), & Ali Tayyebi (Hitachi Energy)

arid

 \rightarrow power injection controlled as function of frequency & voltage measurement

Grid-forming DVPP control

with V. Häberle & X. He (ETH Zürich), E. P. Araujo (UPC), & Ali Tayyebi (Hitachi Energy)

 \rightarrow power injection controlled as function of frequency & voltage measurement

as function of power measurement

 local controllable closed-loop behaviors T_i^{pf}(s) (extendable to non-controllable behaviors)

- local controllable closed-loop behaviors T_i^{pf}(s) (extendable to non-controllable behaviors)
- explicitly model interconnection of DVPP devices (e.g., via LV network & transformers)

- local controllable closed-loop behaviors T_i^{pf}(s) (extendable to non-controllable behaviors)
- explicitly model interconnection of DVPP devices (e.g., via LV network & transformers)
- linearized power flow with Laplacian L_{dvpp}

$$\Delta p_{\rm e}(s) = \frac{L_{\rm dvpp}}{s} \Delta f(s)$$

- local controllable closed-loop behaviors T_i^{pf}(s) (extendable to non-controllable behaviors)
- explicitly model interconnection of DVPP devices (e.g., via LV network & transformers)
- linearized power flow with Laplacian L_{dvpp} $\Delta p_{e}(s) = \frac{L_{dvpp}}{\Delta f(s)}$
- assume coherent response for DVPP design: $\Delta f_i(s) \approx \left(\sum T_i^{\rm pf}(s)^{-1}\right)^{-1} \sum_i \Delta p_{{\rm d},i}(s)$
- desired synchronized PCC dynamics

$$\Delta f_{\rm pcc} = T_{\rm des}^{\rm pf}(s) \,\Delta p_{\rm pcc}$$

- local controllable closed-loop behaviors T_i^{pf}(s) (extendable to non-controllable behaviors)
- explicitly model interconnection of DVPP devices (e.g., via LV network & transformers)
- linearized power flow with Laplacian L_{dvpp} $\Delta p_{e}(s) = \frac{L_{dvpp}}{\Delta f(s)}$
- assume coherent response for DVPP design: $\Delta f_i(s) \approx \left(\sum T_i^{\rm pf}(s)^{-1}\right)^{-1} \, \sum_i \Delta p_{{\rm d},i}(s)$
- desired synchronized PCC dynamics

$$\Delta f_{\rm pcc} = T_{\rm des}^{\rm pf}(s) \, \Delta p_{\rm pcc}$$

 \rightarrow aggregation condition:

$$\left(\sum_i T_i^{\rm pf}(s)^{-1}\right)^{-1} \stackrel{!}{=} T_{\rm des}^{\rm pf}(s)^{-1}$$

no coherent behavior of local voltage magnitudes
 → no analogy to DVPP frequency control setup

- no coherent behavior of local voltage magnitudes
 → no analogy to DVPP frequency control setup
- common global input signal $\Delta ||v||_{pcc}$
- aggregate reactive power injection

 $\Delta q_{\text{agg}} = \sum_{i=1}^{n} \Delta q_i$

- no coherent behavior of local voltage magnitudes
 → no analogy to DVPP frequency control setup
- common global input signal $\Delta ||v||_{pcc}$
- aggregate reactive power injection

 $\Delta q_{\text{agg}} = \sum_{i=1}^{n} \Delta q_i$

• local controllable closed-loop behaviors $T_i^{vq}(s)$ (extendable to non-controllable behaviors)

- no coherent behavior of local voltage magnitudes
 → no analogy to DVPP frequency control setup
- common global input signal $\Delta ||v||_{pcc}$
- aggregate reactive power injection

 $\Delta q_{\text{agg}} = \sum_{i=1}^{n} \Delta q_i$

- local controllable closed-loop behaviors $T_i^{vq}(s)$ (extendable to non-controllable behaviors)
- aggregate DVPP behavior

 $\Delta q_{\text{agg}}(s) = -\sum_{i=1}^{n} T_{i}^{\text{vq}}(s) \Delta ||v||_{\text{pcc}}(s)$

- no coherent behavior of local voltage magnitudes
 → no analogy to DVPP frequency control setup
- common global input signal $\Delta ||v||_{pcc}$
- aggregate reactive power injection

 $\Delta q_{\text{agg}} = \sum_{i=1}^{n} \Delta q_i$

- local controllable closed-loop behaviors $T_i^{vq}(s)$ (extendable to non-controllable behaviors)
- aggregate DVPP behavior

 $\Delta q_{\text{agg}}(s) = -\sum_{i=1}^{n} T_i^{\text{vq}}(s) \Delta ||v||_{\text{pcc}}(s)$

- approximate $\Delta q_{\rm pcc} \approx -\Delta q_{\rm agg}$ (loss compensation)
- \rightarrow aggregation condition:

$$\sum_{i=1}^{n} T_i^{\mathrm{vq}}(s) \stackrel{!}{=} T_{\mathrm{des}}^{\mathrm{qv}}(s)^{-1}$$

Grid-forming DVPP voltage control architecture

- no coherent behavior of local voltage magnitudes
 → no analogy to DVPP frequency control setup
- common global input signal $\Delta ||v||_{pcc}$
- aggregate reactive power injection

 $\Delta q_{\text{agg}} = \sum_{i=1}^{n} \Delta q_i$

- local controllable closed-loop behaviors T^{vq}_i(s) (extendable to non-controllable behaviors)
- aggregate DVPP behavior

 $\Delta q_{\text{agg}}(s) = -\sum_{i=1}^{n} T_{i}^{\text{vq}}(s) \Delta ||v||_{\text{pcc}}(s)$

- approximate $\Delta q_{
 m pcc} \approx -\Delta q_{
 m agg}$ (loss compensation)
- \rightarrow aggregation condition:

$$\sum_{i=1}^{n} T_i^{\mathrm{vq}}(s) \stackrel{!}{=} T_{\mathrm{des}}^{\mathrm{qv}}(s)^{-1}$$

Adaptive divide & conquer strategy for grid-forming DVPP

- disaggregation of $T_{\rm des}^{\rm form}$ via ADPFs

^m via ADPFs

$$T_{des}^{pf}(s)^{-1} = \sum_{i=1}^{n} m_i^{fp}(s) T_{des}^{pf}(s)^{-1} \stackrel{!}{=} \sum_{i=1}^{n} T_i^{pf}(s)^{-1},$$

$$T_{des}^{qv}(s)^{-1} = \sum_{i=1}^{n} m_i^{vq}(s) T_{des}^{qv}(s)^{-1} \stackrel{!}{=} \sum_{i=1}^{n} T_i^{vq}(s),$$

participation condition

$$\sum_{i=1}^{n} m_i^{\rm fp}(s) \stackrel{!}{=} 1 \quad \& \quad \sum_{i=1}^{n} m_i^{\rm vq}(s) \stackrel{!}{=} 1$$

- online adaptation of LPF DC gains $m_i^k(0) = \mu_i^k(t), \quad k \in \{\mathrm{fp}, \mathrm{vq}\}$
- local model matching condition

$$\begin{split} T_i^{\mathrm{pf}}(s) &\stackrel{!}{=} m_i^{\mathrm{fp}}(s)^{-1} T_{\mathrm{des}}^{\mathrm{pf}}(s), \\ T_i^{\mathrm{vq}}(s) &\stackrel{!}{=} m_i^{\mathrm{vq}}(s) T_{\mathrm{des}}^{\mathrm{qv}}(s)^{-1}. \end{split}$$

• compute local LPV \mathcal{H}_∞ matching controllers

Numerical case study

load increase at bus 2 decrease in wind generation frequency deviation (Hz) $\Delta f_{
m wind}$ Δf_{wind} Δf_{py} $\Delta f_{\rm nv}$ $\Delta f_{\rm st}$ $-\Delta f_{st}$ -0.1 active power deviation (MW) 10 $\Delta p_{\rm wind}$ $\Delta p_{\rm wind}$ $\Delta p_{\rm pv}$ $\Delta p_{\rm pv}$ $-\Delta p_{st}$ Δp_{st} 5 2×10⁻⁴ voltage deviation (pu) $-\Delta \|v\|_{pcc}$ $-\Delta \|v\|_{pct}$ -4 reactive power deviation (Mvar) $\Delta q_{\rm wind}$ $\Delta q_{\rm wind}$ 2 $\Delta q_{\rm nv}$ Δq_{m} $\Delta q_{\rm st}$ $\Delta q_{\rm st}$ -1^L 20 25 20 5 10 15 ō 5 10 15 time (s) time (s)

25

• specify decoupled p-f & q-v control

$$\begin{bmatrix} \Delta f_{\rm pcc}(s) \\ \Delta v_{\rm pcc}(s) \end{bmatrix} = T_{\rm des}(s) \begin{bmatrix} \Delta p_{\rm pcc} \\ \Delta q_{\rm pcc} \end{bmatrix}, \ T_{\rm des} = \begin{bmatrix} \frac{1}{H_{\rm p}s + D_{\rm p}} & 0 \\ 0 & D_{\rm q} \end{bmatrix}$$

- good matching of desired behavior (dashed lines)
- unchanged aggregate DVPP behavior during • decrease in wind generation

Numerical case study

load increase at bus 2 decrease in wind generation frequency deviation (Hz) $\Delta f_{\rm wind}$ $-\Delta f_{wind}$ $\Delta f_{\rm pv}$ $\Delta f_{\rm nv}$ $\Delta f_{\rm st}$ $-\Delta f_{st}$ -0.1 active power deviation (MW) 10 $\Delta p_{\rm wind}$ $\Delta p_{\rm wind}$ $\Delta p_{\rm m}$ $\Delta p_{\rm ny}$ $\Delta p_{\rm st}$ $\Delta p_{\rm st}$ 2×10⁻⁴ voltage deviation (pu) $-\Delta ||v||_{pcc}$ $-\Delta \|v\|_{pc'}$ -4 reactive power deviation (Mvar) $\Delta a_{\rm wind}$ $\Delta q_{\rm wind}$ $\Delta q_{\rm pv}$ Δq_{m} $\Delta q_{\rm st}$ Δa_{ei} -1^L0 20 5 10 15 20 25 ō 5 10 15 time (s) time (s)

25

specify decoupled p-f & q-v control •

$$\begin{bmatrix} \Delta f_{\rm pcc}(s) \\ \Delta v_{\rm pcc}(s) \end{bmatrix} = T_{\rm des}(s) \begin{bmatrix} \Delta p_{\rm pcc} \\ \Delta q_{\rm pcc} \end{bmatrix}, \ T_{\rm des} = \begin{bmatrix} \frac{1}{H_{\rm p}s + D_{\rm p}} & 0 \\ 0 & D_{\rm q} \end{bmatrix}$$

- good matching of desired behavior (dashed lines)
- unchanged aggregate DVPP behavior during • decrease in wind generation
- → also possible: hybrid DVPPs including grid-forming + grid-following devices (... same as before)

Spatially distributed DVPP

with V. Häberle & X. He (ETH), Ali Tayyebi (Hitachi Energy), & E. Prieto (UPC)

Spatially distributed DVPP

with V. Häberle & X. He (ETH), Ali Tayyebi (Hitachi Energy), & E. Prieto (UPC)

Spatially distributed DVPP

with V. Häberle & X. He (ETH), Ali Tayyebi (Hitachi Energy), & E. Prieto (UPC)

Assumptions

- only constant power loads within DVPP area
- all devices in the DVPP area with dynamic ancillary services provision are part of the DVPP

transmission system DVPP

distribution system DVPP

transmission system DVPP

distribution system DVPP

 \rightarrow rotational powers to decouple power flow equations

$$\begin{bmatrix} p'\\q' \end{bmatrix} = \begin{bmatrix} X/Z & -R/Z\\R/Z & X/Z \end{bmatrix} \begin{bmatrix} p\\q \end{bmatrix}$$

• lossless p (or p') transmission \rightarrow p-f (or **modified** p'-f) control setup for DVPP at one bus still valid

- lossless p (or p') transmission \rightarrow p-f (or **modified** p'-f) control setup for DVPP at one bus still valid
- limitation 1: (p,q) device constraints need to be mapped (possibly conservatively) to (p',q') constraints
- limitation 2: lossy q (or q') transmission → DVPP control requires omniscient & centralized coordination

- lossless p (or p') transmission \rightarrow p-f (or **modified** p'-f) control setup for DVPP at one bus still valid
- limitation 1: (p,q) device constraints need to be mapped (possibly conservatively) to (p',q') constraints
- limitation 2: lossy q (or q') transmission → DVPP control requires omniscient & centralized coordination

solution: consider global p-f (or p'-f) DVPP control at the POCs & use independent local q-v (or q'-v) controllers

Outline

1. Introduction & Motivation

2. DVPP Design as Coordinated Model Matching

3. Decentralized Control Design Method

4. Grid-Forming & Spatially Distributed DVPP

5. Conclusions

Conclusions

DVPP control

- coordinate heterogeneous RES to provide dynamic ancillary services
- heterogeneity: different device characteristics complement each other
- reduce the need of conventional generation for dynamic ancillary services

22

Conclusions

DVPP control

- coordinate heterogeneous RES to provide dynamic ancillary services
- heterogeneity: different device characteristics complement each other
- · reduce the need of conventional generation for dynamic ancillary services

adaptive divide & conquer strategy

- disaggregation of desired aggregate input/output specification via DPFs
- local LPV \mathcal{H}_∞ model matching taking device constraints into account
- online-update of DPFs & matching control to adapt to variable generation

22

Conclusions

DVPP control

- coordinate heterogeneous RES to provide dynamic ancillary services
- heterogeneity: different device characteristics complement each other
- · reduce the need of conventional generation for dynamic ancillary services

adaptive divide & conquer strategy

- disaggregation of desired aggregate input / output specification via DPFs
- local LPV \mathcal{H}_∞ model matching taking device constraints into account
- online-update of DPFs & matching control to adapt to variable generation

extensions & ongoing research

- grid-forming, hybrid, & spatially distributed DVPP setups
- globally optimal model-matching via modified system level synthesis
- complex frequency & power notions to specify future ancillary services

22

References

Björk, J., Johansson, K. H., & Dörfler, F. (2021). Dynamic virtual power plant design for fast frequency reserves: Coordinating hydro and wind. IEEE Transactions on Control of Network Systems.

Häberle, V., Fisher, M. W., Prieto, E., & Dörfler, F. (2021). Control Design of Dynamic Virtual Power Plants: An Adaptive Divide-and-Conquer Approach. IEEE Transactions on Power Systems.

Fisher, M.W., Hug, G., & Dörfler, F. (2022). Approximation by Simple Poles – Parts I & II. Submitted (arXiv preprint arXiv:2203.16765).

Häberle, V., Tayyebi, A., Prieto, E., & Dörfler, F. (2022). Grid-Forming Control Design of Dynamic Virtual Power Plants. Extended Abstract IFAC Workshop on Networked Systems.

Häberle, V., Tayyebi, A., He, X., Prieto, E., & Dörfler, F. (2022) Grid-Forming and Spatially Distributed Control Design of Dynamic Virtual Power Plants. To be submitted.