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Modern Applied Mathematics as System 2
Machine Learning for Power Systems
PIML for State & Parameter Estimation

System 1 & 2 in Deep Learning & AI

"From System 1 Deep Learning to System 2 Deep
Learning" – Yoshua Bengio, NeurIPS 2019

"Combining Fast and Slow Thinking for Human-like
and Efficient Navigation in Constrained Environments"
– M. Ganappini, et al, arXiv:2201.07050

System 1 – operates automatically & quickly

System 2 – allocates attention to effortfull mental activities
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System 1 & 2 in Deep Learning & AI

"From System 1 Deep Learning to System 2 Deep
Learning" – Yoshua Bengio, NeurIPS 2019

"Combining Fast and Slow Thinking for Human-like
and Efficient Navigation in Constrained Environments"
– M. Ganappini, et al, arXiv:2201.07050

System 1 – operates automatically & quickly

Deep Learning empowered by Automatic Differentiation

System 2 – allocates attention to effortfull mental activities

Physics Informed Machine Learning – more generally
Explainable Heuristics in Quantitative Sciences
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System 1 & 2 in Deep Learning & AI

"From System 1 Deep Learning to System 2 Deep
Learning" – Yoshua Bengio, NeurIPS 2019

"Combining Fast and Slow Thinking for Human-like
and Efficient Navigation in Constrained Environments"
– M. Ganappini, et al, arXiv:2201.07050

System 1 – operates automatically & quickly

Deep Learning empowered by Automatic Differentiation

System 1.5

20th century Applied Math – ODE, PDE, Sensitivity Analysis

System 2 – allocates attention to effortfull mental activities

Physics Informed Machine Learning – more generally
Explainable Heuristics in Quantitative Sciences
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Physics Informed Machine Learning for Power Systems

Machine Learning (e.g. Neural Network, Graph Models, etc)

will make Power System Computations
faster (efficient)
possible even when data/measurements incomplete

requires ground-truth data
actual measurements (Phasor Measurement Units, etc)
power flow solvers (microscopic simulations) – reliable,
possibly heavy

can be power-system "informed" (System 2) vs "agnostic"
(System 1)

What is System 1 today may become System 2 tomorrow
(with proper theory & enough of experiments)

methods/options are many
should be gauged to available data, level of uncertainty, etc
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Incomplete Review: Brief, Recent, Biased
AI/ML in Power Systems (System 1, System 2 & juxtaposition)

Structure Learning, Sparse Measurements, Graphical Models, Focus
on Power Distribution: Deka, et al [2016-2019]

Learning ODE: Power Transmission, Dynamic Coefficients in Swing
Equations, Deterministic and Stochastic, Lokhov, et al [2017]

Real-time Faulted Line Localization and PMU Placement in Power
Transmission through CNN: Li, et al [2018]

Collocation Point Neural ODE for Power Systems: Misuris, et al
[2018]

Learning a Generator Model from Terminal Bus Data: many ML
schemes, tradeoffs, ranking models according to regimes, Stulov et
al [2019]

Learning from power system data stream, phasor-detective
approach, Escobar et al [2019]
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Incomplete Review: Brief, Recent, Biased

AI/ML in Power Systems (System 1, System 2 & juxtaposition)

Physics-Informed Graphical Neural Network for Parameter &
State Estimations in Power Systems
https://arxiv.org/abs/2102.06349 (Pagnier & MC))

Embedding Power Flow into Machine Learning for Parameter and
State Estimation https://arxiv.org/abs/2103.14251 (Pagnier
& MC)

Which Neural Network to Choose for Post-Fault Localization,
Dynamic State Estimation and Optimal Measurement Placement in
Power Systems? https://arxiv.org/abs/2104.03115 (Afonin &
MC))
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Machine Learning (Neural Networks) Setting

NN models: General

NNϕ⃗(x⃗) = y⃗

Vector, ϕ⃗, of
Not-Interpretable Parameters
Input vector: x⃗
Output vector: y⃗

NN models: Loss Functions

L2 norm ∥ · · · ∥

Probabilistic (Cross Entropy or
Kullback-Leibler)

Regularizations, e.g. L1 (sparsity,
physical, etc)

NN models: Architectures

Convolutional NN (LeCun 1989 –)

Graph NN (Scarcelli. et al 2009 –)

Neural ODE (Chen et al 2008 –)

Collocation Point NN (Lagaris et al 1998, Raissi et al 2019 –)

Hamiltonian NN (Greydanus et al 2018 –)
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Power Flow Equations

grid-graph, G = (V, E)

complex-valued powers: ∀a ∈ V : Sa ≡ pa + iqa

complex-valued (electric) potentials, ∀a ∈ V : Va ≡ va exp(iθa),

Power Flow (PF) equations:

pa =
∑

b;{a,b}∈E

vavb
[
gab cos

(
θa − θb

)
+ βab sin

(
θa − θb

)]
,

qa =
∑

b;{a,b}∈E

vavb
[
gab sin

(
θa − θb

)
− βab cos

(
θa − θb

)]
,

Direct PF Map: ΠY : S ≡ (Sa|a ∈ V) 7→ V ≡ (Va|a ∈ V) - implicit
(need to solve eqs. - System 1 & System 2 ML may be useful
https://arxiv.org/abs/2103.14251 L. Pagnier & MC)
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Task: State & Parameter Estimation

Inverse PF Map: S = Π−1
Y (V ) – explicit (do not need to solve

eqs. – System 1 and System 2 ML may be useful
https://arxiv.org/abs/2102.06349 L. Pagnier and MC)

State Estimation
Full Observability: given G and Y to estimate
injected/consumed active and reactive powers = application of
the inverse PF map, Π−1

Limited Observability:
Complement Missing power injections/consumptions at the
nodes where voltages and phases are measured
Challenging Version: to reconstruct injected/consumed powers
and also voltages and phases at all nodes of the system.
(super-resolution – will not discuss)

Parameter Estimation
Reconstruct Graph, G = (V, E), and line characteristics, Y
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How does model reduction work?

Ground Truth – reliable but computations "heavy"
⇒
Reduced Model – lighter computations-wise, loosing some
accuracy (but hopefully not too much)

Transient (seconds) Dynamics of the grid

Swing Equation: mi θ̈i + di θ̇i = pi −
∑

j vivjbij(θi − θj)

Reduced Model Options?

Michael (Misha) Chertkov – chertkov@arizona.edu Model Reduction for Power System Transients



System 1 & System 2 ML for Power Systems
Power System Transients With Physics-Informed PDE

Model Reduction
From ODEs to PDEs in Power Systems
Summary & Path Forward

How does model reduction work?

Ground Truth – reliable but computations "heavy"
⇒
Reduced Model – lighter computations-wise, loosing some
accuracy (but hopefully not too much)

Transient (seconds) Dynamics of the grid

Swing Equation: mi θ̈i + di θ̇i = pi −
∑

j vivjbij(θi − θj)

Reduced Model Options?

PDE as the Reduced Model

m(r) ∂2

∂t2 θ(t; r)+d(r) ∂
∂t θ(t; r) = p(t; r)+

∑
α,β=1,2

∂rαbαβ(r)∂rβθ(t; r)
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How does model reduction work?

Ground Truth – reliable but computations "heavy"
⇒
Reduced Model – lighter computations-wise, loosing some
accuracy (but hopefully not too much)

Transient (seconds) Dynamics of the grid

Swing Equation: mi θ̈i + di θ̇i = pi −
∑

j vivjbij(θi − θj)

Reduced Model Options?

PDE as the Reduced Model

m(r) ∂2

∂t2 θ(t; r)+d(r) ∂
∂t θ(t; r) = p(t; r)+

∑
α,β=1,2

∂rαbαβ(r)∂rβθ(t; r)

Why is Partial Differential Equation modeling a sound option
for model reduction?
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Why is PDE a sound option for model reduction?

Approximating the swing ODEs by a PDE? Really?
Naively: increases # degrees of freedom
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Why is PDE a sound option for model reduction?

Approximating the swing ODEs by a PDE? Really?
Naively: increases # degrees of freedom

... but thinking a bit more (system 2):

It has a sense because
Solutions of linear 2+1 dimensional PDE assume spatial
regularization via a 2d grid with fewer # grid points
Operations are much more efficient over a regular grid
# physical parameters can be reduced dramatically via
coarsening – fewer & large-scale harmonics
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Why is PDE a sound option for model reduction?

Approximating the swing ODEs by a PDE? Really?
Naively: increases # degrees of freedom

... but thinking a bit more (system 2):

It has a sense because
Solutions of linear 2+1 dimensional PDE assume spatial
regularization via a 2d grid with fewer # grid points
Operations are much more efficient over a regular grid
# physical parameters can be reduced dramatically via
coarsening – fewer & large-scale harmonics

Inspired by – 1+1 PDE modeling of PS:
A. Semlyen, 1974.
J. S. Thorp, C. E. Seyler, and A. G. Phadke, 1998.
M. Parashar, J. S. Thorp, and C. E. Seyler, 2004.
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Why is PDE a sound option for model reduction?

Approximating the swing ODEs by a PDE? Really?
Naively: increases # degrees of freedom

... but thinking a bit more (system 2):

It has a sense because
Solutions of linear 2+1 dimensional PDE assume spatial
regularization via a 2d grid with fewer # grid points
Operations are much more efficient over a regular grid
# physical parameters can be reduced dramatically via
coarsening – fewer & large-scale harmonics

How can we make it work?
In the Core of This Talk !
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From Swing Model to PDE Model

From Swing Equation: mi θ̈i + di θ̇i = pi −
∑

j vivjbij(θi − θj)

To PDE as the Reduced Model
m(r) ∂2

∂t2 θ(t; r)+d(r) ∂
∂t θ(t; r) = p(t; r)+

∑
α,β=1,2

∂rαbαβ(r)∂rβθ(t; r)

∀i : θi (t) → θ(t; r), mi → m(r), di → d(r), pi (t) →
p(t; r), bij → bαβ(r), ∀α, β = 1, 2.

Neumann Boundary Conditions:
Vanishing normal derivative of the angle field on the domain
boundary ∂Ω:
∀t, ∀r ∈ ∂Ω :

∑
α,β=1,2

nα(r)bαβ(r)∂rβθ(t; r) = 0

e.g. guaranteeing equilibration to the same frequency
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Initialization Parameters: Artificial Diffusion & Calibration

Artificial Diffusion (AD) –
"diffusive growth" of
non-uniform distribution of
parameters
Generalization of the
metodology developed in M.
Parashar, J. S. Thorp, and C. E.
Seyler (2004) for 1+1 PDEs
AD is stopped when parameters
satisfy some smoothness
criterion – advantageous
because it allows the optimal
width of the Gaussian kernel to
be self-determined
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Speed of EM waves: Inhomogeneous Map

PanTaGruEl model: 3809
buses, 618 generators and
4944 lines. (3221 nodes in
the "full" discretization of
our PDE model.)

(a) Assessment of the local propagation speed as
c(r) =

√
b(r)/m(r).

(b)-(d) Fronts of the perturbation at incremental time
intervals of ∆t = 0.6s, after a fault in Greece (violet star), for
inhomogeneous (red) and average parameters (blue) – slower.
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Steady State Test & Adjustments

(a) One-to-one comparison of local
voltage angle: for each bus in the
discrete model the nearest node in the
continuous mesh is selected. The red
line indicates a perfect match.
(b) The outliers marked in orange, red
and green correspond to the points
marked on the map in (b). The square
markers correspond the solution after
adjusting the susceptances.
(c) PDE solution θ(r) after
adjustment.
(d) GT (ODEs) solution θdisc.

Steady State: PDE vs Ground Truth (ODE)
Michael (Misha) Chertkov – chertkov@arizona.edu Model Reduction for Power System Transients



System 1 & System 2 ML for Power Systems
Power System Transients With Physics-Informed PDE

Model Reduction
From ODEs to PDEs in Power Systems
Summary & Path Forward

Frequency Response of Generators

PDE vs Ground Truth (ODE)

Response in (a) Bulgaria, (b) Poland, (c) France, and (d)
Spain to a 900 MW loss of power in Greece.
dotted – PDE, solid – Ground Truth (ODEs)
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Coarse-Graining/Filtering

Distribution of the grid parameters: Low-Pass Filtering
Original vs a Fourier Low-Pass Filter with a cut-off frequency
30% (of the maximum).
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Coarse-Graining/Filtering

(a) – original vs (b) – filtered:
Comparison of Steady state
solution
(c) Frequency response original
(solid) vs fitlered (dotted)

30% of filtering – almost no loss accuracy
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What did we achieve so far?
Construction of the reduced PDE model (of the ODE/swing
equations). Included:

1 accurate resolution of the boundary conditions
2 efficient and flexible identification of parameters based on

Artificial Diffusion and Fourrier Filtering

Validation via Static and Dynamic Tests – reduced PDE vs
Ground Truth (ODEs)
Observation: — PDE offers significant gain in efficiency:

1 Evaluation of PDE is faster at least factor of ten (for the same
number of discretization points)

2 Can run PDE at much lower resolution
3 Can use much fewer degrees of freedom ⇒ to learn
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Work in Progress: Towards Physics (System 2) Informed ML

Functional maps for m(r), d(r) and bαβ(r) will be modeled as
Neural Networks (System 1)
Artifical Difussion (AD) for the warm start
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Work in Progress: Towards Physics (System 2) Informed ML

Functional maps for m(r), d(r) and bαβ(r) will be modeled as
Neural Networks (System 1)
Artifical Difussion (AD) for the warm start

Goal — efficient & accurate evaluation of multiple scenarios
Auotmatic & much faster than an individual Dynamic
Simultation of today (also faster than real dynamics)
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• Research focused, since 1976, one of the US first
[dynamical systems, integrability, turbulence …]

• Interdisciplinary: 100+ professors/ 26 departments/ 8 
colleges across UA campus (CoS & CoE & Optics – top 3)

• Mixing traditional @ contemporary Applied Math

• Graduate, Ph.D. focused, no terminal M.Sc.

• 60 Ph.D students (13/16/10 enrolled  in 2021/20/19)

• 3 Core Courses (1st year -- Methods, Analysis, Algorithms)
https://appliedmath.arizona.edu/students/new-core-courses

• Strong collaborations with Industry (e.g. Raytheon, Uber, 
Intel, Critical Path, etc) and National Labs (e.g. LANL, 
LLNL, NREL, NNSS, etc) 

• 5 seminar/colloquium series – recorded and posted online

• Participation in many UA & National Edu Projects 

http://appliedmath.arizona.edu/

chertkov@arizona.edu
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Support is Appreciated !!
Energy Systems:
UArizona start up +
DOE/ARPA-E

Thanks for your attention !
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Outline

3 Neural State and Parameter
Estimations: Details
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Neural State and Parameter Estimations: Details

Task SE & PE. Reduced Modeling.

Setting of Partial Observability
Find Equivalent (Reduced) Model of Power System
"Inspired" by Kron Reduction

I (o) = Y (r)V (o)

"o" - observed; "r" - reduced
G(r) ≡ (V(o), E (r))

Y (r) .
= ({a, b}|Y (r)

ab ̸= 0) – associated with the effective (not
necessarily real) power lines, {a, b} ∈ E (r). Y (r)

Reduced Model
S(o) = Π−1

Y (r)(V (o))
Learn it !?
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Task: SE & PE. PIML of Reduced Model

Power Graphical NN (System 2):

min
φ,Y (r)

LPower-GNN

(
φ,Y (r)

)
,

LPower-GNN

(
φ,Y (r)

)
≡ 1

N|V(o)|

N∑
n=1

∥∥∥S(o)
n

− Π−1
Y (r)

(
V (o)

n

)︸ ︷︷ ︸
physics = interpretable

− Σφ

(
V(o)
n ,S (o)

n︸ ︷︷ ︸
NN = "sub-scale"

)∥∥∥2
+ R(φ)︸ ︷︷ ︸

regularization

SIMULTANEOUSLY physics-informed and physics-blind parts
Compare with Vanilla-NN (System 1)

LNN
.
= 1

N|V(0)|

N∑
n=1

∥∥∥S(o)
n − NNφ(V

(o)
n )

∥∥∥2
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Neural State and Parameter Estimations: Details

Task: SE & PE. Power GNN vs Vanilla NN. Experiments.

IEEE 14-bus [panel (a)], IEEE 118-bus [panel (b)] and PanTaGruEl [panel (c)] models

State Estimation Test: Six set of samples were generated for each network. Average
mismatch of predicted power injections (on the training set in parentesis)

case #1 case #2 case #3 case #4 case #5 case #6
Vanilla NN 4.9E-6 7.2E-5 6.3E-3 5.2E-2 6.3E-2 1.4E0

(4.2E-6) (6.6E-5) (5.0E-5) (3.7E-5) (1.2E-4) (4.2E-6)
Power-GNN 3.0E-6 5.8E-7 6.9E-7 1.3E-6 2.9E-7 3.0E-6
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Neural State and Parameter Estimations: Details

Task: SE & PE. Power GNN vs Vanilla NN. Experiments.

Full Observability. Parameter Estimation.

Reconstruction of the admittance matrix
Y for IEEE 14-bus (a), IEEE 118-bus (b)
and PanTaGruEl (c) models

The min, mean and max values are
displayed as circles, crosses and squares
respectively (for 10 realizations.)

Notice !!

Quality of the reconstruction by
Power-GNN – especially for large network
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Neural State and Parameter Estimations: Details

Task: SE & PE. Power GNN vs Vanilla NN. Experiments.

Partial Observability. Parameter Estimation. PanTaGruEl model

Initial (pre-training) values – in green.

Trained values and their Kron-reduction counterparts – red and blue respectively.

(c) shows alternative visualization of the reference-vs-predicted values of the line
conductances (purple) and susceptances (black)

Notice !!

Quality of the reconstruction by Power-GNN – especially for large network
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