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Direct Data Representations of System Modeling Pre-Processing and Controller Design Summary

From Data to More Robust/Resilient Power Systems

Availability of Data

Many new data sources

Noisy (disturbance/asynchrony)

Sparse sensors

Different time constants

Control of Power Systems

Robustness - stay stable under
uncertainty/unexpected events

Resiliency - quick restoration
from abrupt changes/failures

How to maximize the values of newly available data for
robust and resilient control of power systems with increased uncertainties?
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From Data to More Robust/Resilient Power Systems

How to maximize the values of newly available data for
robust and resilient control of power systems with increased uncertainties?

Machine learning alone most likely won’t do because of the high
priority of robustness and resiliency

Classical system ID and controller design may struggle dealing with the
data collected (scalability, noisy sources, etc.)

A system ID framework that provides insights for

1 What amount of data is sufficient

2 In what scenarios would supervised learning help

3 Bounds for the modeling errors originated from noisy data

4 Methods of pre-processing data matrices to reduce the errors

Given the error bounds, we can build robust controllers
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Direct Data Representations of System Modeling Pre-Processing and Controller Design Summary

High-Level Ideas of the System ID Framework

Inspired by behavioral system theory

Originally developed in the 80’s [J. C. Willems 1986]
Recent resurgence with new insights [J. Coulson, J Lygeros, F Dorfler
2019] and [C. De Persis and P. Tesi 2019]

Formulate system ID of linear systems, switched linear systems,
nonlinear systems as solving the following equation

Y = AΨ(U)

where U and Y are resp. constructed by the input and output data

If Ψ is known, system ID is all about solving the linear equations for A

Supervised learning can help fill the gap of unknown parts of the basis
function Ψ

Analyzing the equations Y = AΨ(U) provides great insights on the
bound of the modeling errors and pre-processing methods
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Direct Data Representations of System Modeling Pre-Processing and Controller Design Summary

Case 1: Linear Systems

System model: x(k + 1) = Ax(k) + Bu(k)

Given the measured data for k = 0, · · · ,T , define

U0 = [ud(0), · · · , ud(T − 1)],

X0 = [xd(0), · · · , xd(T − 1)],

X1 = [xd(1), · · · , xd(T )],

The system matrices can then be identified directly:

X1 =
[
B A

] [U0

X0

]
;

[
B A

]
= X1

[
U0

X0

]†
.

Require full row rank of

[
U0

X0

]
(translated to the persistently exciting

condition in the context of behavioral system theory)
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Case 2: Switched Linear Systems

System model: x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k), σ(k) ∈ Γ

Given the measured data for k = 0, · · · ,T , define Ui,0 and Xi,0 for
each i as:

Ui,0 = [ui,σ(0), · · · , ui,σ(T − 1)],

Xi,0 = [xi,σ(0), · · · , xi,σ(T − 1)],

where for every k = 0, · · · ,T ,

ui,σ(k) =

{
uσ(k) if σ(k) = i

0 otherwise
, xi,σ(k) =

{
xσ(k) if σ(k) = i

0 otherwise
.

It is still about solving X1 =
∑

i∈Γ[Bi Ai ]

[
Ui,0

Xi,0

]
For each mode i , we can find a

[
Ui,0

Xi,0

]†
such that [Bi Ai ] = X1

[
Ui,0

Xi,0

]†
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Direct Data Representations of System Modeling Pre-Processing and Controller Design Summary

Case 3: Nonlinear System with Known Basis

System model: y = f (u) = Aϕ(u), where ϕ is a basis

Arrange the measured data by

Φ0 = [ϕ(ud(0)), · · · , ϕ(ud(T − 1))],

Y0 = [yd(0), · · · , yd(T − 1)],

It is still about solving

Y0 = AΦ0 or A = Y0Φ0
†

Direct data representation applies to dynamical or static systems

The full row rank condition can be understood as the condition for
sufficient richness of the data for identifying the full underlying system
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Direct Data Representations of System Modeling Pre-Processing and Controller Design Summary

Case 4: Supervised Learning

Define ψ(z) as the nonlinear activation function
of the neurons, e.g., ReLU functions

The “model” of a single layer ANN is then
written as

y = A0ψ(A1u + b1) + b0,

The equation above is structurally identical to y = Aϕ(u)

Supervised learning is simultaneously identifying A0 and finding
the most proper basis functions through selections of A1 and b1

Choosing the number of neurons, activation functions, the number of
hidden layers (for non-smooth problems) are effectively guessing a
proper structure of the basis functions

If the basis functions are known, then there is no benefit of applying
supervised learning because SL requires a lot more data and
computational complexity compared to straight solving linear equations
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Physics Aware ANN

For cases with known basis functions, combining the earlier results of
switched linear and nonlinear systems would probably be sufficient

If only part of the basis functions are
known, we can formulate physics aware
ANN as shown in the figure

E.g., a system that involves power flow
equations[

P
Q

]
= A

[
|Vl1 ||Vl2 | sin(∆θl)
|Vl1 ||Vl2 | cos(∆θl)

]

It is still about solving Y = AΨ(U)
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Bounds of Modeling Errors

Data are most likely noisy with presence of measurement errors,
latency, and sometimes only pseudo-measurements are available

Focus on the analysis on Y = AΨ (or Y = AΨ(U))

The estimated model straight from the data is given as Ae = YΨ†

The accurate Y ⋆ and Ψ⋆ that generate the actual model: A = Y ⋆Ψ⋆†

Define δY = Y ⋆ − Y and δΨ = Ψ⋆ −Ψ and assume

∥δY ∥
∥Y ⋆∥

≤ rY ,
∥δΨ∥
∥Ψ⋆∥

≤ rΨ < 1.

Goal:
bound ∥δA∥ = ∥A− Ae∥ originated from the non-zero δY and δΨ

The key is essentially characterizing the sensitivity of the
pseudo-inverse of Ψ⋆ with respect to the perturbation δΨ
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Pre-Processing the Data Matrices

Theorem: Bound of the Estimation Error

If the assumptions hold, then ∥δA∥
∥A∥ ≤ cΨ

rY+rΨ
1−rΨ

.

cΨ = ∥Ψ∥
∥∥Ψ†

∥∥ is known as the condition number of Ψ

Probably no analytical bound that does not involve cΨ

The value of cΨ is determined by the data and there is no much
control over it

Several directions of tightening the bound:

1 The concept of effective condition number may help, but the concept
is only used for positive definite matrices [F. Chan and D. E. Foulser
1988], [Z.-C. Li et al. 2007]

2 Choose partial data points while retaining the full row rank of Ψ

3 Diagonal scaling of the data matrices
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Pre-Processing - Selection of the Data Points

Only choose certain columns (data points) of Ψ, indexed by τ and
denoted by Ψτ

Theorem: Bougain-Tzafriri

Suppose matrix Ψ is standardized. Then there is a set τ of column indices
for which

|τ | ≥ c · ∥Ψ∥F
∥Ψ∥

such that Ψτ has the condition number less than or equal to
√
3

√
3 is an impressively tight bound given that condition numbers can

easily go over hundreds. Recall ∥δA∥
∥A∥ ≤ cΨ

rY+rΨ
1−rΨ

Catch: the theorem accounts the option of non-full row rank selection
of columns, or vertical matrices

Algorithmization of the theorem is available [J. A. Tropp 2009]
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Pre-Processing - Diagonal Scaling

The goal is finding diagonal matrices, DL and DR , such that the
condition number of Ψ̂ := DLΨDR is smaller than Ψ.

The structure of the linear equality remains unchanged

Y = AΨ =⇒ YDR = AD−1
L

(
DLΨDR

)
=⇒ Ŷ = ÂΨ̂,

where Ŷ = YDR and Â = AD−1
L .

The bound of the error term δ̂A relative to Â is tighter than the original
one in the sense that the condition number for Ψ̂ is smaller than Ψ

Original:
∥δA∥
∥A∥

≤ cΨ
rY + rΨ
1− rΨ

Diag. scaling:

∥∥∥δ̂A∥∥∥∥∥∥Â∥∥∥ ≤ ĉΨ
r̂Y + r̂Ψ
1− r̂Ψ
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Diagonal Scaling

No analytical conclusion on actual reduction of the modeling error

Diagonal scaling is non-convex in general. Some heuristics are
available [A. M. Bradley 2010], [R. Takapoui and H. Javad 2016]

The condition numbers are reduced by a factor of 10 in an example of
a switched linear system with 5 modes

without pre-processing with pre-processing
Mode 1 199.1373 21.0689
Mode 2 136.7279 16.3103
Mode 3 160.5263 18.2697
Mode 4 173.2082 18.6434
Mode 5 170.2047 20.3172

Table: The condition number of a data matrix w/wo the diagonal scaling.
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Diagonal Scaling

The reduced condition number results in tighter upper bounds
The actual modeling errors are also reduced with diagonal scaling

without pre-processing with pre-processing
Mode 1 4.0230 0.4256
Mode 2 2.7622 0.3295
Mode 3 3.2430 0.3691
Mode 4 3.4992 0.3766
Mode 5 3.4385 0.4104

Table: The upper bounds of ∥δA∥
∥A∥ w/wo the diagonal scaling.

without pre-processing with pre-processing
Mode 1 0.0136 0.0115
Mode 2 0.0115 0.0095
Mode 3 0.0130 0.0125
Mode 4 0.0165 0.0155
Mode 5 0.0129 0.0125

Table: The value of ∥δA∥
∥A∥ w/wo the diagonal scaling.
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Robust Controller Design

The model is written as A = YΨ(U)† with δA characterized

For nonlinear systems, x(k + 1) = AΨ(x(k), u(k)), a common way for
controller designs is the linearization given as

x(k + 1) = A0x(k) + B0u(k) + f0(x(k), u(k)),

∥f0(x(k), u(k))∥ ≤ [x(k)⊤, u(k)⊤]⊤P0[x(k), u(k)],

With A, bounds of δA and Ψ known, one can find good candidates of
A0, B0 and f0 for robust controller design for the nonlinear system

We will showcase the results with a robust state feedback controller for
the following switched linear system:

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k),

u(k) = Kσ(k)x(k),

σ(k) = f (x(k))
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Robust Controller for Switched Linear Systems

A set of control gains Ki , i ∈ Γ satisfying the following common
Lyapunov conditions guarantees the stability of switched linear system
under random switching

∃P ⪰ 0 s.t. (Ai + BiKi )P(Ai + BiKi )
⊤⪯ P, ∀i ∈ Γ.

Similar to [C. De Persis and P. Tesi 2019], for each i ∈ Γ, define[
Ki

I

]
=

[
Ui,0

Xi,0

]
Gi ,

Leading to a data representation of Ai + BiKi

Ai + BiKi = [Bi Ai ]

[
Ki

I

]
= [Bi Ai ]

[
Ui,0

Xi,0

]
Gi

=
(
[Be

i Ae
i ] + δ[Bi Ai ]

)[Ui,0

Xi,0

]
Gi

=

(
X1

(
I −
∑

j∈Γ,j ̸=i

[
Uj,0

Xj,0

]† [
Uj,0

Xj,0

])
+ δ[Bi Ai ]

[
Ui,0

Xi,0

])
Gi .
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Robust Controller for Switched Linear Systems

Ai + BiKi =

(
X1

(
I −
∑

j∈Γ,j ̸=i

[
Uj,0

Xj,0

]† [
Uj,0

Xj,0

])
︸ ︷︷ ︸

the estimated system model

+ δ[Bi Ai ]

[
Ui,0

Xi,0

]
︸ ︷︷ ︸
the modeling error

)
Gi .

The estimated models are straight from the data; we can bound the

second term by ∥δ[Bi Ai ]∥
∥[Bi Ai ]∥ ≤ cΨ

rY+rΨ
1−rΨ

Some standard procedures (Schur complement, S-procedure, etc) are
applied so that linear matrix inequalities (LMIs) conditions for
stabilizing Ki , i ∈ Γ, are established
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Figure: Trajectories of the system under the data-driven robust controller.
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Summary

Conclusions

Direct data representations of system modeling

Insights on how noisy data propagate to inaccurate system modeling

Some pre-processing methods are covered

Robust controller design

Future Work

Enhance the robustness and resiliency of the real-time controllers built
around the data representations of system modeling

Addressing the issue of the complexity involved in the controller design.
Reinforcement learning may be justified in some applications such that
controller design involves computationally intractable problems.

Chin-Yao Chang, chinyao.chang@nrel.gov 19 / 19


	Title Slide
	From Data to More Robust/Resilient Power Systems
	How to Maximize the Values of Newly Available Data
	A System ID Framework That Provides Insight
	High-Level Ideas of the System ID Framework 1
	High-Level Ideas of the System ID Framework 2
	High-Level Ideas of the System ID Framework 3
	High-Level Ideas of the System ID Framework 4
	High-Level Ideas of the System ID Framework 5
	Case 1: Linear Systems 1
	Case 1: Linear Systems 2
	Case 1: Linear Systems 3
	Case 1: Linear Systems 4
	Case 2: Switched Linear Systems 1
	Case 2: Switched Linear Systems 2
	Case 2: Switched Linear Systems 3
	Case 2: Switched Linear Systems 4
	Case 3: Nonlinear System with Known Basis 1
	Case 3: Nonlinear System with Known Basis 2
	Case 3: Nonlinear System with Known Basis 3
	Case 3: Nonlinear System with Known Basis 4
	Case 4: Supervised Learning 1
	Case 4: Supervised Learning 2
	Case 4: Supervised Learning 3
	Case 4: Supervised Learning 4
	Case 4: Supervised Learning 5
	Physics Aware ANN 1
	Physics Aware ANN 2
	Physics Aware ANN 3
	Physics Aware ANN 4
	Bonus of Modeling Errors 1
	Bonus of Modeling Errors 2
	Bonus of Modeling Errors 3
	Bonus of Modeling Errors 4
	Bonus of Modeling Errors 5
	Bonus of Modeling Errors 6
	Pre-Processing the Data Matrices 1
	Pre-Processing the Data Matrices 2
	Pre-Processing - Selection of the Data Points 1
	Pre-Processing - Selection of the Data Points 2
	Pre-Processing - Selection of the Data Points 3
	Pre-Processing - Diagonal Scaling 1
	Pre-Processing - Diagonal Scaling 2
	Pre-Processing - Diagonal Scaling 3
	Diagonal Scaling 1
	Diagonal Scaling 2
	Robust Controller Design 1
	Robust Controller Design 2
	Robust Controller Design 3
	Robust Controller for Switched Linear Systems 1
	Robust Controller for Switched Linear Systems 2
	Robust Controller for Switched Linear Systems 3
	Robust Controller for Switched Linear Systems 4
	Summary

