
Localization and Approximation Based
Methods for Distributed Control and

Optimization

James Anderson

Department of Electrical Engineering
Columbia University

July 15, 2022

The problem(?)

We have more data than we can compute with

Systems are getting bigger, sensors are getting cheaper & smaller

Motivation 2

The fallacy

Distributed computing/The Cloud/The Edge/GPUs will save us

Motivation 3

Trade solution accuracy for improved computation time.

Outline

1 Approximation via sketching

– Randomized SVD

– Distributed iterative Hessian sketching

2 Federated learning

– Approximation

– Localization

4

Key Idea: Sketching

Ground truth Sketch 1 Sketch 2

How to generate a sketch? Error incurred when using the sketch?

5

Shameless self-promotion 6

Singular Value Decomposition

Given A ∈ Cm×n, define p = min{m,n}, the SVD of A is given by

A = UΣV ∗

where

• U ∈ Cm×m is unitary

• V ∈ Cn×n is unitary

• Σ ∈ Rm×n is diagonal

when m 6= n, the matrix Σ takes the form

Σ =

[
Σ̂
0

]
or Σ =

[
Σ̃ 0

]
where Σ̂ = diag(σ1, . . . , σn) and Σ̃ = diag(σ1, . . . , σm), and

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

Randomized SVD 7

Alternative SVDs

Compact SVD

A = UrΣrV
∗
r

• Σr is a square r × r matrix

• r is given by the number of non-zero singular values

• Ur and Vr are semi-unitary

Truncated SVD
A ≈ UlΣlV

∗
l

• Σl is a square l × l matrix and l < r

• Ul and Vl are semi-unitary

Randomized SVD 8

Optimal Low-Rank Approximation

Error bounds

The Eckart-Young theorem tells us that for eack k:

σk+1 = minimize ‖A−X‖
subject to rank(X) ≤ k

Moreover, an optimal X can be constructed from the k-dominant left
singular vectors of A:

X = QQ∗A

Computational cost

• Standard SVD cost O(mn2) when n� m

• l-truncated SVD takes O(mnl) flops using classical methods

Randomized SVD 9

Randomized SVD Algorithm: RSVD

Stage 1

Find a matrix Q such that

A ≈ QQ∗A, where Q has orthonormal columns.

Interpret ≈ as meaning that Q satisfies

‖(I −QQ∗)A‖ ≤ ε, for some acceptable ε > 0.

Stage 2

Use Q and your favorite classical SVD algorithm then rearrange.

Randomized SVD 10

Stage 1: Random Sampling

Objective

Given a matrix A ∈ Cm×n compute an approximate basis for range(A).

Algorithm

1 Sample the range of A by generating independent “random” vectors
ω(i) for i = 1, . . . , k:

y(i) = Aω(i) ⇐⇒ Y = AΩ

2 Orthogonalize the columns of Y

Note

• The matrix Y is a called a sketch of A

• Y ∈ Cm×k where k � min{m,n}
Randomized SVD 11

Stage 1: Analysis

Stage 1: Algorithm

1 Draw a random matrix Ω ∈ Rn×(k+l) // Draw l extra samples

2 Form the sketch Y = AΩ // Cost O(mn(k + l))

3 Construct orthogonal basis: [Q,∼] = QR(Y) // Cost O(n(k + l)2)

Theorem (Halko, Martinsson, Tropp, 2011)
Given A ∈ Rm×n, a target rank k ≥ 2, and parameter l ≥ 2 such that
k + l ≤ min{m,n}. The algorithm above produces a matrix Q with
orthonormal columns that satisfies

E ‖A−QQ∗A‖ ≤
[
1 +

4
√
k + l

l − 1

√
min{m,n}

]
σk+1.

Randomized SVD 12

Stage 2: Building an Approximate SVD

Randomized SVD 13

Realization Using RSVD

Linear System Identification

System Realization 14

Realization Using RSVD

Problem formulation

Collect data from the LTI system

xt+1 = Axt +But + wt

yt = Cxt +Dut + vt

The data

• We have N <∞ observations over finite time-horizon T

• Observe: {yit}Tt=0, {uit}Tt=0 for i = 1, . . . , N

• Assume: ut
i.i.d.∼ N (0, σ2

uI), wt
i.i.d.∼ N (0, σ2

wI), vt
i.i.d.∼ N (0, σ2

vI)

Objective

Find matrices (Â, B̂, Ĉ, D̂) that “best fit” observed data

System Realization 15

Realization

The process of obtaining a state-space model from the Markov matrix

G =
[
D CB CAB . . . CAT−2B

]
∈ Rm×Tp.

• When wt, vt ≡ 0 have access to G, otherwise must solve an
optimization problem to obtain an estimate Ĝ

• The realization problem is to determine the state-space matrices
from Ĝ, i.e., a mapping

Ĝ 7→
(
Â B̂

Ĉ D̂

)

System Realization 16

Ho-Kalman Algorithm

Assumptions

• (A,B,C) is minimal
• n = rank(H) ≤ min{T1, T2}

Algorithm

1 From G construct the Hankel matrix

H =


CB CAB . . . CAT2B
CAB CA2B . . . CAT2+1B
CA2B CA3B . . . CAT2+2B

...
...

...
...

CAT1−1B CAT1B . . . CAT1+T2−1B

 ∈ RpT1×m(T1+1)

where T = T1 + T2 + 1.

By assumption H and H− are full rank
System Realization 17

Ho-Kalman Algorithm

Assumptions

• (A,B,C) is minimal

• n = rank(H) ≤ min{T1, T2}

Step 2: Factorization

H− is full rank and so it can be factored as

H− =


C
CA

...
CAT−1

 [B AB . . . AT2−1B
]

= OQ

System Realization 18

Ho-Kalman Algorithm

Algorithm

1 From G construct the Hankel matrix

H =


CB CAB . . . CAT2B
CAB CA2B . . . CAT2+1B
CA2B CA3B . . . CAT2+2B

...
...

...
...

CAT1−1B CAT1B . . . CAT1+T2−1B

 ∈ RpT1×m(T1+1)

where T = T1 + T2 + 1.

2 Compute a n-truncated SVD of H−: H− ≈ UnΣnV
∗
n

3 O = UnΣ
1
2
n , Q = Σ

1
2
nV ∗n

4 Â = O†H+Q†

System Realization 19

Comments

• Realization is a non-convex problem

• H-K algorithm provides realizations unique up to similarity transform

(A,B,C,D) 7→ (TAT−1, TB,CT−1, D)

• Computation cost: at least O(pmnT1T2) flops from the SVD step.

• Robustness guarantee [Oymak & Ozay, 2019]:

max
{
‖Â− T−1AT‖, ‖B̂ − T−1B‖, ‖Ĉ − CT‖

}
≤ c
√
‖G− Ĝ‖ = O

(
1

N4

)
.

System Realization 20

Stochastic Ho-Kalman Algorithm

Idea

Replace the truncated SVD with a randomized SVD!

• Measurements contain noise, so full accuracy isn’t necessary anyway

• The deterministic algorithm struggles with modest systems sizes

Main Result (Informal)

Theorem
The stochastic Ho-Kalman Algorithm reduces the computational
complexity of the realization problem from O(pmn3) to O(pmn2 log n)
when T1 = T2 = n . The achievable robustness is the same as
deterministic algorithm.

System Realization 21

Numerical Experiments

Scalability and Approximation Error

• (n,m, p, T)→ (state, input, output, horizon)
• No parallelization used with the randomized SVD
• No power iterations
• Oversampling parameter: p = 10
• Relative error:

‖G − Ĝ‖H∞

‖G‖H∞

System Realization 22

Numerical Experiments

Scalability and Approximation Error

• (n,m, p, T)→ (state, input, output, horizon)
• No parallelization used with the randomized SVD
• No power iterations
• Oversampling parameter: p = 10
• Relative error:

‖G − Ĝ‖H∞

‖G‖H∞

System Realization 23

Additional Numerical Experiments

Oversampling parameter

• Example 4: (n,m, p, T) = (100, 80, 50, 500)

• No power iterations

System Realization 24

Stochastic Realization Algorithm: Conclusions

Methodology

• Performance degradation due to randomization almost negligible

• Non-asymptotic sample complexity bounds remain intact

• Order of magnitude gain in computation time (for large instances)

• Not yet exploited parallel computing

Algorithm tuning

• Algorithm performance can be boosted by including power iterations

– This does impact running time

• Algorithm performance not sensitive to oversampling rate

– Doesn’t appear to impact running time

System Realization 25

Shameless self promotion 26

Least Squares Sketching

Sketched Least squares

Given the problem:

x? ∈ arg min
x∈C

1

2n
‖Ax− y‖2︸ ︷︷ ︸

f(x)

, A ∈ Rm×n

Instead solve:

x] ∈ arg min
x∈C

1

2n
‖S(Ax− y)‖2︸ ︷︷ ︸

g(x)

,

with S ∈ Rm×n,m� n

• f(x?) ≤ f(x]) ≤ (1 + δ)f(x?)

Sketching the Hessian 27

Iterative Hessian Sketch

Pilanci and Wainwright [PW] showed that this method is provably bad!

Rewrite the LS problem as

minimize
x∈C

‖Ax‖2 − 〈x,AT y〉.

Newton’s method produces updates

xt+1 = xt − α(ATA)−1AT (Axt − b).

If we sketch A in the norm only (and keep track of residuals), we get

xt+1 = xt − α(ATST
t StA)−1AT (Axt − b).

Distribute this over q nodes:

xt+1 = xt − α
1

q

q∑
k=1

(ATST
t,kSt,kA)−1AT (Axt − b).

Sketching the Hessian 28

Distributed Iterative Hessian Sketch

Proposed by Bartan and Pilanci [BP]

Generalized sketching and refined the analysis [Wang & Anderson 2022]

Sketching the Hessian 29

System Identification

Parameter estimation

Given observed data D believed to have been generated by

xt+1 = Axt +But + wt

yt = Cxt +Dut + vt,

estimate the Markov parameters.

Learning Markov Parameters 30

Learning Markov Parameters

OLS formulation

An estimate Ĝ of the Markov matrix is obtained by solving

minimize
X

‖UX − Y ‖2F

where

• X ∈ RmT×p

• U and Y are Toeplitz

• Solution via QR decomposition: O(NT (mT)2)

Learning Markov Parameters 31

Result

DIHS applied to OLS problem

• Assume number of rollouts, N , satisfies N > 8mT + 16 log(T/δ)

• Define κ = mNT 2

Theorem (Informal)
Fix δ ∈ (0, 1) and ρ ∈ (0, 1

2). If the sketch dimension satisfies

s >
c0 log4(κ)

ρ2
mT,

then at iteration k, DIHS satisfies

‖Xk −XLS‖F ≤ 2

(
ρ
√
q

)k

‖XLS‖F

with high probability.

Learning Markov Parameters 32

Numerical Experiments

Sketch selection and number of workers

• 40 states, 30 inputs, 20 outputs

• ∼ 45M data points

Learning Markov Parameters 33

Numerical Experiments

12 workers: same system

Learning Markov Parameters 34

DIHS: Conclusions

• Randomized numerical linear algebra can be applied to Sys ID

• General least squares problems (and beyond)

• Applications to control synthesis?

Learning Markov Parameters 35

Shameless self-promotion 36

Federated Learning

A framework for distributed optimization that accounts for:

• Device and data heterogeneity, and data locality

Federated Learning Problem Setup 37

Federated Learning: Local Data

Centralized OLS

• All data in one place (or globally accessible)

Federated Learning Problem Setup 38

Federated Learning: Local Data

Federated OLS

• Data is not shared between clients

Federated Learning Problem Setup 39

Federated Learning

General problem formulation:

minimize
x∈Rn

1

N

N∑
i=1

fi(x) + g(x)

• fi non-convex, L-smooth

• g non-smooth, convex

• problem data is stored locally on each device and is never shared

• client-server computation model

Federated Learning Problem Setup 40

Federated Learning

We want to solve the distributed optimization problem

minimize
x∈Rn

1

N

N∑
i=1

fi(x) + g(x)

No shortage of algorithms:

• FedAvg, FedSplit, FedProx, FedDR, SCAFFOLD, FedPD, FedDyn,...

• Our contribution: FedADMM

– Converges with partial participation and approximate local
solutions

Federated Learning Problem Setup 41

FedADMM

Rewrite the problem as

minimize
x,x̄

1

N

N∑
i=1

fi(xi) + g(x̄)

s.t. I = 1x̄

where

• x: concatenation of local variables [xT1 , x
T
2 , . . . , x

T
N]

• x̄: global consensus variable

Each agent has an augmented Lagrangian:

Li(xi, x̄, zi) := fi(xi) + g(x̄k) + 〈zki , xi − x̄k〉+
η

2

∥∥xi − x̄k∥∥2

FedADMM 42

Client-side

FedADMM 43

Client-side

Approximation

Clients do not have to minimize Li precisely:∥∥∥∥xk+1
i − arg min

xi

Li(xi, x̄
k, zki)

∥∥∥∥ ≤ εi,k+1

Partial Participation

At iteration k only a subset of clients Sk need to send local updates

FedADMM 44

Server-side

FedADMM 45

Analysis

Convergence (Informal):

When g ≡ 0, we have

1

K + 1

K∑
k=0

E
[∥∥∇f(x̄k)

∥∥2
]
≤ c1[F (x0)− f?]

K + 1︸ ︷︷ ︸+
1

N(K + 1)
l(εi,k, εi,k+1)︸ ︷︷ ︸

(1) (2)

where

l(εi,k, εi,k+1) :=

K∑
k=0

n∑
i=1

(c2ε
2
i,k + c3ε

2
i,k+1)

.

• (1): initial optimality gap

• (2): cost of working with approximate solutions

• Impact of partial participation reflected in the constants (omitted)

FedADMM 46

Analysis

Convergence (Informal):

If the sum of the accuracies is bounded by D > 0, then FedADMM
requires

K =

⌊
c1[F (x0)− F ?] + (c2 + c3)D

ε2

⌋
≡ O(ε−2)

to achieve an ε-suboptimal stationary point.

• All the above analysis can be extended to include g

FedADMM 47

Conclusions

• Randomized algorithms are widely used in ML & scientific computing

• Demonstrated their use in simple control applications

• Power applications?!

Acknowlegements

• Han Wang, Columbia University

• Siddartha Marella, Columbia University

• NSF: 2144634, DoE: DE-SC0022234

james.anderson@columbia.edu www.columbia.edu/∼ja3451

48

Bibliography

• [HMT]: Halko, Martinsson, and Tropp, Finding structure with
randomness: Probabilistic algorithms for constructing approximate
decompositions. SIAM Review, 53.2, 2011.

• [OO]: Oymak and Ozay, Non-asymptotic identification of LTI
systems from a single trajectory. Proc. of the American Control
Conference, 2019.

• [PW]: Pilanci and Wainwright, Iterative Hessian sketch: Fast and
accurate solution approximation for constrained least-squares.
Journal of Machine Learning Research 17, 2016.

• [BP]: Bartan and Pilanci, Distributed averaging methods for
randomized second order optimization, arXiv:2002.0654, 2020.

49

Backup slides

50

Stage 1: Comments

Slowly decaying spectrum

Can boost accuracy by incorporating power iterations. Based on the
observation:

W := (AA∗)qA

has the same singular vectors as A. But

σj(W) = σj(A)2q+1, j = 1, 2, . . .

• Replace Y = AΩ with Y = WΩ

• Complicates the error bound – will show it later

Target rank selection

Straight forward to adaptively construct the basis vectors Q until
tolerance is met. See [HMT] for details.

51

Additional Numerical Experiments

Power Iterations

• Example 4: (n,m, p, T) = (100, 80, 50, 500)

52

	Title Slide
	The Problem
	The Fallacy
	Trade Solution Accuracy for Improved Computation Time
	Key Idea: Sketching
	Large-Scale System Identification Using a Randomized SVD
	Singular Value Decomposition
	Alternative SVDs
	Optimal Low-Rank Approximation
	Randomized SVD Algorithm: RSVD
	Stage 1: Random Sampling
	Stage 1: Analysis
	Stage 2: Building an Approximate SVD
	Realization Using RSVD 1
	Realization Using RSVD 2
	Realization
	Ho-Kalman Algorithm 1
	Ho-Kalman Algorithm 2
	Ho-Kalman Algorithm 3
	Comments
	Stochastic Ho-Kalman Algorithm
	Numerical Experiments 1
	Numerical Experiments 2
	Additional Numerical Experiments
	Stochastic Realization Algorithm: Conclusions
	Learning Liner Models Using Distributed Iterative Hessian Sketching
	Least Squares Sketching
	Iterative Hessian Sketch
	Distributed Iterative Hessian Sketch
	System Identification
	Learning Markov Parameters
	Result
	Numerical Experiments 3
	Numerical Experiments 4
	DHS: Conclusions
	FedADMM: A Federated Primal-Dual Algorithm Allowing Partial Participation
	Federated Learning 1
	Federated Learning: Local Data
	Federated Learning: Local Data 2
	Federated Learning 2
	Federated Learning 3
	FedADMM
	Client-Side 1
	Client-Side 2
	Server-Side
	Analysis 1
	Analysis 2
	Conclusions
	Bibliography
	Backup Slides
	Stage 1: Comments
	Additional Numerical Experiments

