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The problem(?)

We have more data than we can compute with

Systems are getting bigger, sensors are getting cheaper & smaller
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The fallacy

Distributed computing/The Cloud/The Edge/GPUs will save us
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Trade solution accuracy for improved computation time.

Outline

1 Approximation via sketching

– Randomized SVD

– Distributed iterative Hessian sketching

2 Federated learning

– Approximation

– Localization
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Key Idea: Sketching

Ground truth Sketch 1 Sketch 2

How to generate a sketch? Error incurred when using the sketch?
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Shameless self-promotion 6



Singular Value Decomposition

Given A ∈ Cm×n, define p = min{m,n}, the SVD of A is given by

A = UΣV ∗

where

• U ∈ Cm×m is unitary

• V ∈ Cn×n is unitary

• Σ ∈ Rm×n is diagonal

when m 6= n, the matrix Σ takes the form

Σ =

[
Σ̂
0

]
or Σ =

[
Σ̃ 0

]
where Σ̂ = diag(σ1, . . . , σn) and Σ̃ = diag(σ1, . . . , σm), and

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0
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Alternative SVDs

Compact SVD

A = UrΣrV
∗
r

• Σr is a square r × r matrix

• r is given by the number of non-zero singular values

• Ur and Vr are semi-unitary

Truncated SVD
A ≈ UlΣlV

∗
l

• Σl is a square l × l matrix and l < r

• Ul and Vl are semi-unitary
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Optimal Low-Rank Approximation

Error bounds

The Eckart-Young theorem tells us that for eack k:

σk+1 = minimize ‖A−X‖
subject to rank(X) ≤ k

Moreover, an optimal X can be constructed from the k-dominant left
singular vectors of A:

X = QQ∗A

Computational cost

• Standard SVD cost O(mn2) when n� m

• l-truncated SVD takes O(mnl) flops using classical methods
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Randomized SVD Algorithm: RSVD

Stage 1

Find a matrix Q such that

A ≈ QQ∗A, where Q has orthonormal columns.

Interpret ≈ as meaning that Q satisfies

‖(I −QQ∗)A‖ ≤ ε, for some acceptable ε > 0.

Stage 2

Use Q and your favorite classical SVD algorithm then rearrange.
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Stage 1: Random Sampling

Objective

Given a matrix A ∈ Cm×n compute an approximate basis for range(A).

Algorithm

1 Sample the range of A by generating independent “random” vectors
ω(i) for i = 1, . . . , k:

y(i) = Aω(i) ⇐⇒ Y = AΩ

2 Orthogonalize the columns of Y

Note

• The matrix Y is a called a sketch of A

• Y ∈ Cm×k where k � min{m,n}
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Stage 1: Analysis

Stage 1: Algorithm

1 Draw a random matrix Ω ∈ Rn×(k+l) // Draw l extra samples

2 Form the sketch Y = AΩ // Cost O(mn(k + l))

3 Construct orthogonal basis: [Q,∼] = QR(Y ) // Cost O(n(k + l)2)

Theorem (Halko, Martinsson, Tropp, 2011)
Given A ∈ Rm×n, a target rank k ≥ 2, and parameter l ≥ 2 such that
k + l ≤ min{m,n}. The algorithm above produces a matrix Q with
orthonormal columns that satisfies

E ‖A−QQ∗A‖ ≤
[
1 +

4
√
k + l

l − 1

√
min{m,n}

]
σk+1.
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Stage 2: Building an Approximate SVD
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Realization Using RSVD

Linear System Identification

System Realization 14



Realization Using RSVD

Problem formulation

Collect data from the LTI system

xt+1 = Axt +But + wt

yt = Cxt +Dut + vt

The data

• We have N <∞ observations over finite time-horizon T

• Observe: {yit}Tt=0, {uit}Tt=0 for i = 1, . . . , N

• Assume: ut
i.i.d.∼ N (0, σ2

uI), wt
i.i.d.∼ N (0, σ2

wI), vt
i.i.d.∼ N (0, σ2

vI)

Objective

Find matrices (Â, B̂, Ĉ, D̂) that “best fit” observed data
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Realization

The process of obtaining a state-space model from the Markov matrix

G =
[
D CB CAB . . . CAT−2B

]
∈ Rm×Tp.

• When wt, vt ≡ 0 have access to G, otherwise must solve an
optimization problem to obtain an estimate Ĝ

• The realization problem is to determine the state-space matrices
from Ĝ, i.e., a mapping

Ĝ 7→
(
Â B̂

Ĉ D̂

)
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Ho-Kalman Algorithm

Assumptions

• (A,B,C) is minimal
• n = rank(H) ≤ min{T1, T2}

Algorithm

1 From G construct the Hankel matrix

H =


CB CAB . . . CAT2B
CAB CA2B . . . CAT2+1B
CA2B CA3B . . . CAT2+2B

...
...

...
...

CAT1−1B CAT1B . . . CAT1+T2−1B

 ∈ RpT1×m(T1+1)

where T = T1 + T2 + 1.

By assumption H and H− are full rank
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Ho-Kalman Algorithm

Assumptions

• (A,B,C) is minimal

• n = rank(H) ≤ min{T1, T2}

Step 2: Factorization

H− is full rank and so it can be factored as

H− =


C
CA

...
CAT−1

 [ B AB . . . AT2−1B
]

= OQ
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Ho-Kalman Algorithm

Algorithm

1 From G construct the Hankel matrix

H =


CB CAB . . . CAT2B
CAB CA2B . . . CAT2+1B
CA2B CA3B . . . CAT2+2B

...
...

...
...

CAT1−1B CAT1B . . . CAT1+T2−1B

 ∈ RpT1×m(T1+1)

where T = T1 + T2 + 1.

2 Compute a n-truncated SVD of H−: H− ≈ UnΣnV
∗
n

3 O = UnΣ
1
2
n , Q = Σ

1
2
nV ∗n

4 Â = O†H+Q†
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Comments

• Realization is a non-convex problem

• H-K algorithm provides realizations unique up to similarity transform

(A,B,C,D) 7→ (TAT−1, TB,CT−1, D)

• Computation cost: at least O(pmnT1T2) flops from the SVD step.

• Robustness guarantee [Oymak & Ozay, 2019]:

max
{
‖Â− T−1AT‖, ‖B̂ − T−1B‖, ‖Ĉ − CT‖

}
≤ c
√
‖G− Ĝ‖ = O

(
1

N4

)
.
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Stochastic Ho-Kalman Algorithm

Idea

Replace the truncated SVD with a randomized SVD!

• Measurements contain noise, so full accuracy isn’t necessary anyway

• The deterministic algorithm struggles with modest systems sizes

Main Result (Informal)

Theorem
The stochastic Ho-Kalman Algorithm reduces the computational
complexity of the realization problem from O(pmn3) to O(pmn2 log n)
when T1 = T2 = n . The achievable robustness is the same as
deterministic algorithm.
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Numerical Experiments

Scalability and Approximation Error

• (n,m, p, T )→ (state, input, output, horizon)
• No parallelization used with the randomized SVD
• No power iterations
• Oversampling parameter: p = 10
• Relative error:

‖G − Ĝ‖H∞

‖G‖H∞
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Additional Numerical Experiments

Oversampling parameter

• Example 4: (n,m, p, T ) = (100, 80, 50, 500)

• No power iterations
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Stochastic Realization Algorithm: Conclusions

Methodology

• Performance degradation due to randomization almost negligible

• Non-asymptotic sample complexity bounds remain intact

• Order of magnitude gain in computation time (for large instances)

• Not yet exploited parallel computing

Algorithm tuning

• Algorithm performance can be boosted by including power iterations

– This does impact running time

• Algorithm performance not sensitive to oversampling rate

– Doesn’t appear to impact running time
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Least Squares Sketching

Sketched Least squares

Given the problem:

x? ∈ arg min
x∈C

1

2n
‖Ax− y‖2︸ ︷︷ ︸

f(x)

, A ∈ Rm×n

Instead solve:

x] ∈ arg min
x∈C

1

2n
‖S(Ax− y)‖2︸ ︷︷ ︸

g(x)

,

with S ∈ Rm×n,m� n

• f(x?) ≤ f(x]) ≤ (1 + δ)f(x?)
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Iterative Hessian Sketch

Pilanci and Wainwright [PW] showed that this method is provably bad!

Rewrite the LS problem as

minimize
x∈C

‖Ax‖2 − 〈x,AT y〉.

Newton’s method produces updates

xt+1 = xt − α(ATA)−1AT (Axt − b).

If we sketch A in the norm only (and keep track of residuals), we get

xt+1 = xt − α(ATST
t StA)−1AT (Axt − b).

Distribute this over q nodes:

xt+1 = xt − α
1

q

q∑
k=1

(ATST
t,kSt,kA)−1AT (Axt − b).
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Distributed Iterative Hessian Sketch

Proposed by Bartan and Pilanci [BP]

Generalized sketching and refined the analysis [Wang & Anderson 2022]
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System Identification

Parameter estimation

Given observed data D believed to have been generated by

xt+1 = Axt +But + wt

yt = Cxt +Dut + vt,

estimate the Markov parameters.

Learning Markov Parameters 30



Learning Markov Parameters

OLS formulation

An estimate Ĝ of the Markov matrix is obtained by solving

minimize
X

‖UX − Y ‖2F

where

• X ∈ RmT×p

• U and Y are Toeplitz

• Solution via QR decomposition: O(NT (mT )2)
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Result

DIHS applied to OLS problem

• Assume number of rollouts, N , satisfies N > 8mT + 16 log(T/δ)

• Define κ = mNT 2

Theorem (Informal)
Fix δ ∈ (0, 1) and ρ ∈ (0, 1

2 ). If the sketch dimension satisfies

s >
c0 log4(κ)

ρ2
mT,

then at iteration k, DIHS satisfies

‖Xk −XLS‖F ≤ 2

(
ρ
√
q

)k

‖XLS‖F

with high probability.

Learning Markov Parameters 32



Numerical Experiments

Sketch selection and number of workers

• 40 states, 30 inputs, 20 outputs

• ∼ 45M data points
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Numerical Experiments

12 workers: same system

Learning Markov Parameters 34



DIHS: Conclusions

• Randomized numerical linear algebra can be applied to Sys ID

• General least squares problems (and beyond)

• Applications to control synthesis?
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Federated Learning

A framework for distributed optimization that accounts for:

• Device and data heterogeneity, and data locality

Federated Learning Problem Setup 37



Federated Learning: Local Data

Centralized OLS

• All data in one place (or globally accessible)
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Federated Learning: Local Data

Federated OLS

• Data is not shared between clients

Federated Learning Problem Setup 39



Federated Learning

General problem formulation:

minimize
x∈Rn

1

N

N∑
i=1

fi(x) + g(x)

• fi non-convex, L-smooth

• g non-smooth, convex

• problem data is stored locally on each device and is never shared

• client-server computation model

Federated Learning Problem Setup 40



Federated Learning

We want to solve the distributed optimization problem

minimize
x∈Rn

1

N

N∑
i=1

fi(x) + g(x)

No shortage of algorithms:

• FedAvg, FedSplit, FedProx, FedDR, SCAFFOLD, FedPD, FedDyn,...

• Our contribution: FedADMM

– Converges with partial participation and approximate local
solutions
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FedADMM

Rewrite the problem as

minimize
x,x̄

1

N

N∑
i=1

fi(xi) + g(x̄)

s.t. I = 1x̄

where

• x: concatenation of local variables [xT1 , x
T
2 , . . . , x

T
N ]

• x̄: global consensus variable

Each agent has an augmented Lagrangian:

Li(xi, x̄, zi) := fi(xi) + g(x̄k) + 〈zki , xi − x̄k〉+
η

2

∥∥xi − x̄k∥∥2
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Client-side
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Client-side

Approximation

Clients do not have to minimize Li precisely:∥∥∥∥xk+1
i − arg min

xi

Li(xi, x̄
k, zki )

∥∥∥∥ ≤ εi,k+1

Partial Participation

At iteration k only a subset of clients Sk need to send local updates
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Server-side
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Analysis

Convergence (Informal):

When g ≡ 0, we have

1

K + 1

K∑
k=0

E
[∥∥∇f(x̄k)

∥∥2
]
≤ c1[F (x0)− f?]

K + 1︸ ︷︷ ︸+
1

N(K + 1)
l(εi,k, εi,k+1)︸ ︷︷ ︸

(1) (2)

where

l(εi,k, εi,k+1) :=

K∑
k=0

n∑
i=1

(c2ε
2
i,k + c3ε

2
i,k+1)

.

• (1): initial optimality gap

• (2): cost of working with approximate solutions

• Impact of partial participation reflected in the constants (omitted)
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Analysis

Convergence (Informal):

If the sum of the accuracies is bounded by D > 0, then FedADMM
requires

K =

⌊
c1[F (x0)− F ?] + (c2 + c3)D

ε2

⌋
≡ O(ε−2)

to achieve an ε-suboptimal stationary point.

• All the above analysis can be extended to include g
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Conclusions

• Randomized algorithms are widely used in ML & scientific computing

• Demonstrated their use in simple control applications

• Power applications?!
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Backup slides
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Stage 1: Comments

Slowly decaying spectrum

Can boost accuracy by incorporating power iterations. Based on the
observation:

W := (AA∗)qA

has the same singular vectors as A. But

σj(W ) = σj(A)2q+1, j = 1, 2, . . .

• Replace Y = AΩ with Y = WΩ

• Complicates the error bound – will show it later

Target rank selection

Straight forward to adaptively construct the basis vectors Q until
tolerance is met. See [HMT] for details.
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Additional Numerical Experiments

Power Iterations

• Example 4: (n,m, p, T ) = (100, 80, 50, 500)
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