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Objectives Distributed RTS

Demonstrate and Test Real-Time Simulation (RTS) that are:

Capable of interfacing with geographically distributed RTS assets at other
national labs and universities

Conduct dynamic, transient analysis of complex power and energy systems

Relevance to the Department of Energy (DOE) Mission:

Advanced study of hypotheses, concepts, or innovative approaches to
scientific or technical problems;

Experiments and analyses directed towards “proof of principle” or early
determination of the utility of new scientific ideas, technical concepts, or
devices;

Two main outcomes

Utilization of DOE and academic research assets based on a unique
experimental methodology

Creation of simulation capabilities that can assess and analyze next
generation power grids
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RT simulators provides a highly accurate mechanism of modeling
Low overhead; specialized processors & communications; Hardware-In-the-Loop
Limited computation capability due to “REAL-TIME” feature

RTS capabilities with unique assets located at numerous research labs

DOE and Labs will be at forefront of the science, and better able to address those
larger power and energy challenges if RT capabilities are leveraged
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* 2 models 4-bus 2-area test system & IEEE 13 node feeder test system
— Transmission network comprises of a current source that approximates the load
— Distribution network comprises of a voltage source that approximates the source

- Data exchange with TCP/UDP over Energy Sciences Network (ESNET)
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Ping times recorded between INL and NREL (milliseconds)
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nternet Based Co‘mmunication & Performance
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Ping times recorded between INL and NREL (milliseconds)

Number of Pings exchanged Number of Pings exchanged x 10°
Maximum = 369 milliseconds  Maximum = 515 milliseconds
Minimum =20 milliseconds  Minimum =20 milliseconds
Average = 27.1557 milliseconds * Average = 27.0409 milliseconds
Data drops =24 « Data drops =17

Demonstration shows that most data packets took less than 30
milliseconds to travel between INL and NREL
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Challenges In Dlstrlbutec

Step 1: Identify communication latency
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Step 2: Mitigate communication latency
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Latency Mitigation Techniques
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« Geographically distributed experiments between INL and NREL indicate the
data latency challenges

— Latency mitigation techniques are required to ensure simulation fidelity
- Two main research directions within the project to address the latency issue:

— Real-time implementation of linear prediction method
— Representation of interface quantities in time-frequency domain: dynamic phasors
- Application of advanced methods for signal processing, filtering, data compression

Subsystem 1
time-domain
simulation
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Transformation to time-frequency representation
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Inverse
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Data latency must be compensated
- Quantities in time-frequency domain provide more

knowledge for prediction of remote subsystem
compared to time-domain samples

- An adequate representation provides coefficients

that do not change rapidly

Communication network

v

X(t—At) ——>|Xp(t)

T—l
Subsystem 2
T time-domain

Y(t) <«

y(t) simulation

Data latency mitigation is necessary for accurate distributed RTS
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Improvements With Linear Predictor Approach

Two Phase to Ground Fault in Transmission Line
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Impact of data latency is mitigated in several cases using linear prediction
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Distributed RTS Accuracy ‘& Stability Evaluation

A systematic assessment and testing of latency on simulation fidelity is
substantial for fundamental research on latency mitigation techniques
The results obtained based on the theoretical framework

Quantify the effect of latency in terms of stability and accuracy regions

Serve as a basis to better understand critical issues and further improve
latency mitigation techniques
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Diagram of a simplified geographically distributed simulation system used for theoretical framework
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Super Lab for the Futuristic Grids

Collaborative research infrastructure for
« Large-scale systems

RT-Super Lab . Unigue (P)HIL experiments
+ Cutting-edge interdisciplinary research

OFAL-RT NREL
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VILLAS framework for RT-Super Lab

VILLASnode e
Gateway for connecting |
digital real-time simulators
Interface to VILLASweb
ACS provides support for
deploying VILLASNnode i
Instances :{m H| |

. Qe 1y Vet
Distributed under LGPLv2
license
* VILLASweb
— Web interface for consolidated ] .

monitoring of the distributed
simulation

— Web Server, Backend and
Database hosted at INL for RT-
Super Lab Demo

— Web interface is available within
VPN for all participants

[Somke]—_[Somwat]

POLITO, Turin, Italy
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RT SuperLab
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RT SuperLab & Next-Gen Global Grids

+ Collaboration between USA and EU institutions enables research groups to
jointly investigate innovative solutions such as a direct submarine HVDC cable
between USA and EU within the concept of Global Power Grid

« RT-Super Lab environment exploits complementary strengths and knowledge of
USA and EU institutions that is particularly beneficial in this research context

Illustration of a possible Global Grid

Jones, Lawrence E. Renewable Energy Integration: Practical Management of Variability, Uncertainty and Flexibility In Power Grids.

15
Burlington: Academic Press, 2014.
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Concluding Remarks

Two main outcomes achieved:

Utilization of DOE and academic research assets based on a unique
experimental methodology

Creation of simulation capabilities that can assess and analyze next
generation power grids

Distributed Real-Time Simulation between INL and NREL was
successfully demonstrated

Impact of data latency was studied via two approaches i.e., heuristic and
formal method based

Linear prediction method was utilized to increase the accuracy of
distributed Real-Time Simulation

Formal method of assessing the accuracy and stability of distributed
Real-Time Simulation will be completed

A RT Super Lab demonstration of including several DOE labs and
academic research centers is under development

16
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http://news.thomasnet.com/companystory/inl-nrel-successfully-demonstrate-remote-power-grid-simulation-
20044059
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