PHIL CAPABILITIES AND EXPERIENCE AT THE POWER NETWORKS DEMONSTRATION CENTRE
Presentation Overview

1. Triphase Platform Development Project
2. PV Inverter Response During Transients and Disturbances Project
3. Q&A
PNDC – Unique Testing Capabilities

Power Supplies

- **On Grid**: 11kV 2 x 1MVA connections
- **11/11kV 1MVA Isolation Transformer**
- **TriPhase Convertor**: 500KVA ±0-1300V DC
- **Off Grid**: 1MVA Gen Set

HV Network (11kV)

- 3 x underground feeders for a total equivalent length of 6km.
- 11kV/400V transformers from 1.2 MVA to 25kVA
- 1 x overhead feeder for a total equivalent length of 60km
- Pole mounted auto reclosers
- Series voltage regulator

LV Network

- HV Fed from HV Network
- Mock impedances ~ 0.6 km
- Load banks total ~ 600 kVA
- Indoor and outdoor test connection points

Power Hardware In the Loop

- Hardware in the Loop Simulation with 6 x racks of RTDS hardware
- Optical interface provides 2 way interaction with both Gen Set and TriPhase Convertors.
- 3-50μs simulation time-step ... up to 360 x 3 phase busses
- Accurate frequency response up 3kHz

Fault Throwing

- High Voltage Fault Throwing Phase to Phase, Phase to Ground, Multiple Injection Points
- Low Voltage Fault Throwing Unit, Flexible Connection

Industry Standard DMS / SCADA / Historian

- PowerOn Fusion monitoring control and switching management
- OSISoft PI Historian connected to SCADA and Fast Data Acquisition System

- *Mock impedances ~ 0.6 km*
- *Load banks total ~ 600 kVA*
- *Indoor and outdoor test connection points*
Overview Triphase: Programmable Power Converter

- 6xPM90 modules = 540kVA installed capacity
- Open Simulink model control of power converters
- Fibre optic link to RTDS
- Modular expansion capability
Overview Triphase: Key Components

PM90
- Power Electronics
- Inductors
- Capacitors
- Measurement
- Fuse Protection
- Busbars

Front cabinet
- Target PC 1
- Target PC 2
- Circuit Breakers
- Anti-condensation heater thermostat control
- Triphase output: Powersafe panel mounted source type connectors
- Triphase output: Link between right and left
Overview Network upgrade

- 1 MVA three phase
- 2 secondary winding transformer

New Genie Evo Switchgear

- Triplex cable
- 11kV
- 433V
- HV Earth
- LV Earth 1
- LV Earth 2

- 433 supply 1
- 433 supply 2

- 2x120mm 4 core

Triphase
Overview Triphase: Operation Modes

DC current and voltage source operation
±650V, ±390A, ±270kW

DC voltage source operation (1)
±650V, ±780A, ±540kW

DC voltage source operation (2)
50-1300V, ±600A, ±540kW

3-wire AC current and voltage source operation (1)
0-480V_{RMS}, 0-390A_{RMS}, ±270kW

3-wire AC voltage source operation (2)
0-480V_{RMS}, 0-780A_{RMS}, ±540kW

2x 3-wire AC voltage source operation
2x 0-480V_{RMS}, 0-390A_{RMS}, ±270kW
Overview Triphase Interface: RTDS, Simulink & GUI

- **RTDS**
- **Simulink**
- **GUI**

LC multi-mode communication fibre
Grid Simulator Testing: Triphase Platform

PNDC Network Development

- **PNDC Power Supply**
- **Triphase**
- **Device under test**

RTDS control and measurement logging

Modelled power system

Digital link

DC or AC

PHIL Testing
Demonstration Project

RTDS control and measurement logging
Modelled Shipboard power system

Triphase (Voltage Source)

Device under test

AC pulse load

1 2 3 4
Overview Triphase: Applications

- Shipboard power system PHIL platform
- Grid-integration of renewables for industrial scale PV
- Energy storage based interface
- Smart Programmable load and source to validate aircraft equipment
- Battery test emulation system
- Testing of battery system for grid stabilizing
- Testing of multiple PV inverters connected to common DC bus (PNDC planned project)
Dynamic Power Systems Laboratory

- **RTDS (Real Time Station)**
- **Campus Supply**
 - 433V
- **Cell 1**
 - 90 kVA Triphase
 - 40 kW (256 steps)
 - 30 kVAR (256 steps)
 - Static load bank
- **Cell 2**
 - 15 kVA Triphase
 - 10 kW (64 steps)
 - 7.5 kVAR (64 steps)
 - Static load bank
 - 2.2 kW & 5.5kW Induction machines (motors or generators)
- **Cell 3**
 - 2 kVA Synchronous
 - 10 kVA 3-phase inverter
 - 10 kW (64 steps)
 - 7.5 kVAR (64 steps)
 - Static load bank
 - Spare for visiting projects
 - 2x 7.5kW Induction machines (motors or generators)

Microgrid management algorithm (example of graphical display in real time)
CHARACTERISING LV PV INVERTER RESPONSE DURING FAULT TRANSIENTS AND VOLTAGE DISTURBANCES
Project Overview and Objectives

• Empirical characterisation of LV connected PV inverters.

• DNOs need to understand the impact on switchgear ratings due to inverter fault contribution.

• Low voltage ride-through implications when considering large inverter penetration.

• Challenge current modelling and fault calculation assumptions.
Inverters under Test

- Off the shelf inverters.
- Vendors most commonly found in the UK.
- G59 or G83 compliant.

<table>
<thead>
<tr>
<th>Inverter model</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB PVI-5000-TL-OUTD</td>
<td>5.56 kVA (single-phase)</td>
</tr>
<tr>
<td>SMA Sunny Boy 5000TL</td>
<td>5 kVA (single-phase)</td>
</tr>
<tr>
<td>KACO Powador 6002</td>
<td>5 kVA (single-phase)</td>
</tr>
<tr>
<td>SMA Tripower 10000TL</td>
<td>10 kVA (three-phase)</td>
</tr>
</tbody>
</table>
Test Network Configuration

- Fault test configuration
 - LV short circuit (solid or resistive).
 - Aims to control retained voltage at the inverter output.
 - 0° and 90° point on wave (PoW) fault inception.

- Voltage depression test configuration:
 - MG set controls the network voltage following an RTDS generated profile.
 - Rate and depth of voltage depression is limited by the exciter controls.
Applied Tests

<table>
<thead>
<tr>
<th>Fault type</th>
<th>Fault resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-E (A phase to earth)</td>
<td>1.5, 0.75, 0.375, 0.1875, 0</td>
</tr>
<tr>
<td>P-P (A-B phase)</td>
<td>1.5, 0.75, 0.375, 0.1875, 0</td>
</tr>
<tr>
<td>P-P-P (three-phases)</td>
<td>1.5, 0.75, 0.375, 0</td>
</tr>
</tbody>
</table>

Voltage depression

<table>
<thead>
<tr>
<th>Inverter</th>
<th>Pre-event loading (percentage of inverter kW rating)</th>
<th>Fault approximate PoW inception</th>
<th>Event duration (based on RTDS control profile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB</td>
<td>100%</td>
<td>0°, 90°</td>
<td>0.3s, 5s</td>
</tr>
<tr>
<td>KACO</td>
<td>80%</td>
<td>0°, 90°</td>
<td>0.3s, 5s</td>
</tr>
<tr>
<td>SMA (1ph)</td>
<td>100%</td>
<td>0°, 90°</td>
<td>0.3s, 5s</td>
</tr>
<tr>
<td>SMA (3ph)</td>
<td>30%</td>
<td>0°, 90°</td>
<td>0.3s, 5s</td>
</tr>
</tbody>
</table>
Example Single Phase Inverter Fault Response

- ABB 5kW single phase inverter.
- 0.5pu pre-fault loading, 0Ω earth fault, 0° PoW.
- Current output stops after a few cycles.
Example Three Phase Inverter Fault Response

- SMA 10kW three phase inverter.
- 0.3pu pre-fault loading, 1.5Ω earth fault, 0° PoW.
- Inverter increases current output in a healthy phase to maintain pre-fault power output.
Changes in Reactive Power Output

- KACO 5kW single phase inverter.
- 0.5pu pre-fault loading, 0.75Ω earth fault, 0° PoW.
- Current phase angle jumps correspond to changes in reactive power output.
- Sudden reduction in reactive power may be indicative of reaching internal device limits.
Example Fast Voltage Depression Inverter Response

- ABB 5kW single phase inverter.
- 1pu pre-fault loading
- 0.3s commanded voltage depression duration, 93% retained voltage.
- Inverter current dropped by 29%
Example Slow Voltage Depression Inverter Response

- ABB 5kW single phase inverter.
- 1pu pre-fault loading
- 5s commanded voltage depression duration, 87% retained voltage.
- Maximum inverter current drop of 85%
Common Inverter Behaviour

• Variations based on manufacturer implementation, however:

• The inverters are more likely to provide a sustained current contribution during fault conditions with a higher retained voltage.

• The inverters tend to increase their current output in order to maintain the pre-fault active power output level. A more noticeable increase in current output is observed if the inverter is not fully loaded prior to the fault.

• In most cases, where current output is sustained, the inverters attempt to maintain a level of reactive power output that can reach pre-fault levels if the inverter is not fully loaded.

• There is no evidence that the point on wave at which the fault is introduced has an impact on the sustained inverter current output during a fault.
Comparison with Inverter Behaviour Reported in the Literature

- There are many discrepancies between obtained test results and literature results based on modelling – difficult to compare due to limited information about the models.

- Close agreement of test results with reported model behaviour based on manufacturer input (e.g. modelling work by Quanta Technology).

- Most literature reports a fault current contribution of 1.2-2pu of rated current. This is in contrast to the test results, where in the majority of cases the inverters did not exceed rated current output.
• June 12-15th, summarising the main results.

• SPEN co-authors conducted simple simulation to compare the three phase inverter behaviour using PowerFactory.

• When running an EMT simulation, the faulty phase current increased as opposed to the healthy one as tested.

• When running an unbalanced RMS simulation, all three phase currents increase in tandem.
Next Steps

• Characterise the response of multiple inverters connected simultaneously to the grid.

• Testing of larger three phase units with focus on asymmetrical conditions.

• Testing different X/R ratio faults.

• Development and validation of a “parametrisable” inverter model.

• P-HiL testing using Triphase with focus on grid level voltage and frequency disturbances.

• Ultimately feed into UK distribution codes and engineering recommendations.
ELECTRA IRP: Researcher Exchange programme (REX)

- Global organisation
- to/from
- ELECTRA partner

- European organisation
- to/from
- ELECTRA partner

- ELECTRA partner
- to/from
- ELECTRA partner

- 20 potential hosts within the consortium
- Exchange durations 2 – 12 weeks
- Expenses are covered
- Fifth call open to EU and Global organizations

For more details go to www.electairp.eu mobility tab
ERIGrid, Transnational Access

- Free access to 21 first-class Smart Grid labs
- Call Open now (deadline 15 June)
- Call every 6 months, until December 2019

- Chance to conduct your own experiments free of charge
- Reimbursements of your expenses
- Access to concentrated know-how and best practices in the field of smart grids.

Apply till 15 June 2017

For more details go to www.erigrid.eu/transnational-access