

PHIL CAPABILITIES AND EXPERIENCE AT THE POWER NETWORKS DEMONSTRATION CENTRE

Presentation Overview

- 1. Triphase Platform Development Project
- 2. PV Inverter Response During Transients and Disturbances Project
- 3. Q&A

PNDC – Unique Testing Capabilities

Overview Triphase: Programmable Power Converter

- 6xPM90 modules = 540kVA installed capacity
- Open Simulink model control of power converters
- Fibre optic link to RTDS
- Modular expansion capability

Overview Triphase: Key Components

Overview Network upgrade

Overview Triphase: Operation Modes

Overview Triphase Interface: RTDS, Simulink & GUI

Grid Simulator Testing: Triphase Platform

Demonstration Project

Overview Triphase: Applications

- Shipboard power system PHIL platform
- Grid-integration of renewables for industrial scale PV
- Energy storage based interface
- Smart Programmable load and source to validate aircraft equipment
- Battery test emulation system
- Testing of battery system for grid stabilizing
- Testing of multiple PV inverters connected to common DC bus (PNDC planned project)

Dynamic Power Systems Laboratory

CHARACTERISING LV PV INVERTER RESPONSE DURING FAULT TRANSIENTS AND VOLTAGE DISTURBANCES

Project Overview and Objectives

- Empirical characterisation of LV connected PV inverters.
- DNOs need to understand the impact on switchgear ratings due to inverter fault contribution.
- Low voltage ride-through implications when considering large inverter penetration.
- Challenge current modelling and fault calculation assumptions.

Inverters under Test

- Off the shelf inverters.
- Vendors most commonly found in the UK.
- G59 or G83 compliant.

Inverter model	Rating		
ABB PVI-5000-TL-OUTD	5.56 kVA (single-phase)		
SMA Sunny Boy 5000TL	5 kVA (single-phase)		
KACO Powador 6002	5 kVA (single-phase)		
SMA Tripower 10000TL	10 kVA (three-phase)		

Test Network Configuration

- Fault test configuration
 - LV short circuit (solid or resistive).
 - Aims to control retained voltage at the inverter output.
 - 0° and 90° point on wave (PoW) fault inception.
- Voltage depression test configuration:
 - MG set controls the network voltage following an RTDS generated profile.
 - Rate and depth of voltage depression is limited by the exciter controls.

Applied Tests

ſ		Fault type Fault resist		ance (Ω)		1			
	P-E (A phase to earth)		1.5, 0.75, 0.375,		Faults	Voltage depression			
			0.1875, 0		4		.		
	P-P (A-B phase)		1.5, 0.75, 0.375, 0.1875, 0				Pre-	Event duration (based	
ļ 	P-P-F	P (three-phases)	ee-phases) 1.5, 0.75, 0.375, 0			Inverter	event loading	on RTDS control profile)	
Inve	Inverter Pre-fault lo		Jading	Fault app	oroximate PoW				
	(percentage of i		nverter kW	in	ception	ABB	100%	0.3s, 5s	
	rating		,)			КАСО	80%	0.3s, 5s	
AF	ABB 50, 100%		0°, 90°		SMA				
KA	KACO 50, 80%		%	(0°, 90°	(1ph)	100%	0.3s, 5s	
SMA	MA (1ph) 50, 100%		(0°, 90°	SMA				
SMA	(3ph)	3ph) 30%		(0°, 90°	(3ph)	30%	0.3s, 5s	

Example Single Phase Inverter Fault Response

ABB 5kW single phase inverter.

UNIVERSITY of STRATHCLYDE

- 0.5pu pre-fault loading, 0Ω earth fault, 0° PoW.
- Current output stops after a few cycles.

Example Three Phase Inverter Fault Response

- SMA 10kW three phase inverter.
- 0.3pu pre-fault loading, 1.5Ω
 earth fault, 0° PoW.
- Inverter increases current output in a healthy phase to maintain pre-fault power output.

Changes in Reactive Power Output

- KACO 5kW single phase inverter.
- 0.5pu pre-fault loading, 0.75Ω earth fault, 0° PoW.
- Current phase angle jumps correspond to changes in reactive power output.
- Sudden reduction in reactive power may be indicative of reaching internal device limits.

Example Fast Voltage Depression Inverter Response

- ABB 5kW single phase inverter.
- 1pu pre-fault loading
- 0.3s commanded voltage
 depression duration, 93%
 retained voltage.
- Inverter current dropped by 29%

Example Slow Voltage Depression Inverter <a>
 Response

- ABB 5kW single phase inverter.
- 1pu pre-fault loading
- 5s commanded voltage depression duration, 87% retained voltage.
- Maximum inverter current drop of 85%

Common Inverter Behaviour

- Variations based on manufacturer implementation, however:
- The inverters are more likely to provide a sustained current contribution during fault conditions with a higher retained voltage.
- The inverters tend to increase their current output in order to maintain the pre-fault active power output level. A more noticeable increase in current output is observed if the inverter is not fully loaded prior to the fault.
- In most cases, where current output is sustained, the inverters attempt to maintain a level of reactive power output that can reach pre-fault levels if the inverter is not fully loaded.
- There is no evidence that the point on wave at which the fault is introduced has an impact on the sustained inverter current output during a fault.

Comparison with Inverter Behaviour Reported in the Literature

- There are many discrepancies between obtained test results and literature results based on modelling difficult to compare due to limited information about the models.
- Close agreement of test results with reported model behaviour based on manufacturer input (e.g. modelling work by Quanta Technology).
- Most literature reports a fault current contribution of 1.2-2pu of rated current. This is in contrast to the test results, where in the majority of cases the inverters did not exceed rated current output.

CIRED 2017 Paper

- June 12-15th, summarising the main results.
- SPEN co-authors conducted simple simulation to compare the three phase inverter behaviour using PowerFactory.
- When running an EMT simulation, the faulty phase current increased as opposed to the healthy one as tested.
- When running an unbalanced RMS simulation, all three phase currents increase in tandem.

Next Steps

- Characterise the response of multiple inverters connected simultaneously to the grid.
- Testing of larger three phase units with focus on asymmetrical conditions.
- Testing different X/R ratio faults.
- Development and validation of a "parametrisable" inverter model.
- P-HiL testing using Triphase with focus on grid level voltage and frequency disturbances.
- Ultimately feed into UK distribution codes and engineering recommendations.

ELECTRA IRP: Researcher Exchange programme

For more details go to <u>www.electrairp.eu</u> mobility tab

ERIGrid, Transnational Access

